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Abstract

We give a review of our recent work on conserved charges in cosmological spacetimes. We compute

the mass and the angular momenta of various solutions in D dimensions. This is an extended version of

a talk given by B. Tekin. The original material can be found in the related papers in our references.

1. Introduction

Conserved quantities, such as energy-momentum, electric charge, angular momentum, baryon number
etc., are important in the description of physical phenomena. In the presence of gravity, definition of certain
conserved charges ( such as energy) become rather tricky. In the literature, one can find many different
definitions which give different results for the same spacetimes. Especially when long-range scalar fields that
modify the asymptotic form of the metric are present, one has to be very careful about writing down an
energy expression. Our task in this paper is modest: we shall give a review of the techniques of defining
conserved charges in asymptotically (Anti)de-Sitter spaces developed by Abbott-Deser (AD) [1] and Deser-
Tekin (DT) [2]. [ We would like to stress that we do not present new material but simply quote our earlier
work and carry out the computations in a little more detail.] These methods are in the same spirit as the
Arnowitt-Deser-Misner (ADM) [3] methods which use the Killing symmetries and work for asymptotically
flat geometries. For related information, please see [4, 5, 6].

In addition to the cosmological Einstein theory, we will also define the global charges primarily in D

dimensional quadratic theories that frequently appear in various low energy string theory or supergravity
models. We will first present a reformulation of the original definition of conserved charges in cosmological
Einstein theory; then we will derive the generic form of the energy for quadratic gravity theories in D

dimensions and specifically study the ghost-free low energy string-inspired model: Gauss-Bonnet (GB) plus
Einstein terms [2].

Let us recall that a definition of gauge invariant conserved (global) charges in a diffeomorphism-invariant
theory rests on the “Gauss law” and the presence of asymptotic Killing symmetries. More explicitly, in any
diffeomorphism-invariant gravity theory, a vacuum satisfying the classical equations of motion is chosen as
the background relative to which excitations and any background gauge-invariant properties are defined.
Two important model-independent features of these charges are: First, the vacuum itself has zero charge;
secondly, they are expressible as surface integrals [1, 2, 3, 7]. [ Just to give an example of how various
charge definitions in the literature give different expressions, we simply note that in certain prescriptions,
different than ours, the background AdS space have non-vanishing energy. For comparison of various charge
definitions we refer the reader to a recent paper [8]. ]
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2. Reformulation of Abbott-Deser Charges for generic gravity

models

2.1. Conserved Charges

We first look at how conserved charges arise in a generic gravity theory coupled to a covariantly
conserved bounded matter source τµν . Consider the following equations of motion which either comes from
a proper Lagrangian or is endowed with the Bianchi identities and covariant conservation of the matter
source:

Φµν(g, R,∇R, R2, ...) = κτµν , (1)

where Φµν is the “Einstein tensor” of a local, invariant, but otherwise arbitrary, gravity action and κ is an
effective coupling constant. We work in generic D dimensions.

Now we will decompose our metric into the sum of two parts:

gµν = ḡµν + hµν , (2)

where ḡµν solves (1) for τµν = 0 and a deviation part hµν that vanishes sufficiently rapidly at infinity and is
not necessarily small everywhere. [ One can also work in the first-order vielbein spin-connection formulation,
which is necessary whenever fermionic fields are to be taken into account. Such a computation was carried
out recently [6], whose result we shall quote below. ]

Separating the field equations (1) into a part linear in hµν and collecting all other non-linear terms and
the matter source τµν in Tµν that constitute the total source, one obtains

O(ḡ)µναβhαβ = κTµν , (3)

Φµν(ḡ, R̄, ∇̄R̄, R̄2, ...) = 0, by assumption; the operator O(ḡ) depends only on the background metric ḡµν .
It is clear that this operator inherits both background Bianchi identity and background gauge invariance
namely, ∇̄µO(ḡ)µναβ = O(ḡ)µναβ∇̄α = 0, from (the Bianchi identities of) the full theory. As a consequence
of these invariances, it is guaranteed that if the background ḡµν admits a set of Killing vectors ξ̄

(a)
µ ,

∇̄µξ̄(a)
ν + ∇̄ν ξ̄(a)

µ = 0, (4)

then the energy-momentum tensor can be used to construct the following (ordinarily) conserved vector
density current :

∇̄µ(
√−ḡT µν ξ̄a

ν ) ≡ ∂µ(
√−ḡT µν ξ̄a

ν ) = 0. (5)

Note that the crucial point here is that we are looking for ordinarily conserved charges and we can get this
with the help of background Killing vectors. Therefore, up to a constant, the conserved Killing charges are
expressed as

Qµ(ξ̄a) =
∫
M

dD−1x
√−ḡT µν ξ̄a

ν =
∫

Σ

dSiFµi . (6)

Here M is a spatial (D–1) hypersurface and Σ is its (D−2) dimensional boundary; Fµi is an antisymmetric
tensor obtained from O(ḡ), whose explicit form, depends on the theory.

After this generic construction let us apply the outlined procedure in the most interesting case: The
cosmological Einstein theory. The linearization of the Einstein equation

Rµν − 1
2

gµνR + Λgµν = κτµν , (7)
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GÜLLÜ, TEKİN

follows as

RL
µν − 1

2
hµνR̄ − 1

2
ḡµνRL + Λhµν + O(h2) + ... = 0 ,

the background terms will be zero because ḡµν itself satisfies the field equation. Here, [∇µ,∇ν]Vλ = Rµνλ
σVσ

and Rµν ≡ Rµλν
λ and the constant curvature vacuum ḡµν has Riemann, Ricci and scalar curvatures that

are

R̄µλνβ =
2Λ

(D − 1)(D − 2)
(ḡµν ḡλβ − ḡµβ ḡλν) ; (8)

R̄µν = R̄µλνβḡβλ =
2Λ

(D − 2)
ḡµν ; (9)

R̄ = R̄µν ḡµν =
2Λ

(D − 2)
D . (10)

We define all terms of second and higher order in hµν and the matter source τµν to be the gravitational
energy-momentum tensor and write GL

µν as

GL
µν ≡ RL

µν − 1
2

ḡµνRL − 2Λ
(D − 2)

hµν ≡ κTµν . (11)

As can be explicitly checked, the left hand side of obeys the background Bianchi identity

∇̄µ(R
µν
L − 1

2
ḡµνRL − 2Λ

(D − 2)
hµν) = ∇̄µGµν

L = 0 (12)

and thus

∇̄µT µν = 0 . (13)

In order to write the spatial volume integrals as surface integrals, we need to carry out the linearization
of the relevant tensors. In this part that is what we shall do.

We will take the signature to be (−, +, +, +, ...). We know that any invertable metric must satisfy
gµνgνα = δµ

α Renaming δgµν = hµν ,

gµν ≡ ḡµν + δgµν .

We linearize the connections Γµ
αβ = 1

2
gµν(∂αgβν + ∂βgαν − ∂νgαβ) with the use of gµν = ḡµν − δgµν

δΓµ
αβ =

1
2

ḡµν(∇̄αδgβν + ∇̄βδgαν − ∇̄νδgαβ) . (14)

The Riemann tensor is

Rµ
αβν = ∂βΓµ

αν − ∂νΓ
µ
αβ + Γσ

ανΓ
µ
σβ − Γσ

αβΓµ
σν , (15)

yielding;

δRµ
αβν = ∇̄β(δΓµ

αν) − ∇̄ν(δΓ
µ
αβ) . (16)

µ ↔ β contraction gives the linear part Ricci tensor ( a.k.a the Palatini identity)

δRµν = ∇̄α(δΓα
µν)− ∇̄µ(δΓα

αν) .

Now let us write this in terms of δgαβ with use of (14) and manipulating the indices we are left with

δRµν =
1
2
{∇̄σ∇̄µδgνσ + ∇̄σ∇̄νδgµσ − ¯ δgµν − ∇̄µ∇̄νh} , (17)
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where h = ḡασhασ and ∇̄σ∇̄σ ≡ ¯ that is the background d’Alembertian operator.
The linear part of the Ricci scalar reads

RL = δR = −¯h + ∇̄σ∇̄µhσµ − 2
(D − 2)

Λh . (18)

Now, we are ready to write (11) in terms of the deviation part of the metric. That is,

Gµν
L = Rµν

L − 1
2

ḡµνRL − 2
(D − 2)

Λhµν

=
1
2
(−¯hµν − ∇̄µ∇̄νh + ∇̄σ∇̄νhσµ + ∇̄σ∇̄µhσν)

−1
2

ḡµν(−¯ h + ∇̄σ∇̄αhσα − 2
(D − 2)

Λh)− 2
(D − 2)

Λhµν . (19)

2.2. Converting the volume integrals to surface Integrals

Recall that there are two facets of a proper conserved charge definition: First, identification of the “Gauss
law”, whose existence is guaranteed by gauge invariance; second, choice of the proper vacuum, possessing
sufficient Killing symmetries with respect to which global, background gauge-invariant, generators can be
defined; these will always appear as surface integrals in the asymptotic vacuum [7].

In converting the volume integrals to surface integrals, let us the following route which will be convenient
in the higher curvature cases. Collect all terms in the covariant derivative to get surface terms.

2ξ̄νGµν
L = 2ξ̄νRµν

L − ξ̄ν ḡµνRL − 4Λ
(D − 2)

ξ̄νhµν

= ξ̄ν{−∇̄ρ∇̄ρhµν − ∇̄µ∇̄νh + ∇̄σ∇̄νhσµ + ∇̄σ∇̄µhσν}

−ξ̄µ{−∇̄ρ∇̄ρh + ∇̄σ∇̄νhσν − 2Λ
(D − 2)

h} − 4Λ
(D − 2)

ξ̄νhµν (20)

which can be recast into the form

2ξ̄νGµν
L = −ξ̄ν∇̄ρ∇̄ρhµν − ξ̄ρ∇̄µ∇̄ρh + ξ̄ρ∇̄ν∇̄ρhνµ + ξ̄ν∇̄ρ∇̄µhρν

+ξ̄µ∇̄ρ∇̄ρh − ξ̄µ∇̄ρ∇̄νhρν +
2Λ

(D − 2)
ξ̄µh − 4Λ

(D − 2)
ξ̄νhµν . (21)

To collect all terms, we use the commutator relation of a vector that gives us the Riemann tensor. In the
first, fourth, fifth and sixth terms the Killing vectors are taken inside the covariant derivative with extra
terms that will come from the derivative of the Killing vectors. In the second and third terms, places of
derivatives must change, after that the Killing vectors can be taken inside the derivative with two additional
terms, the second comes from the exchange of derivatives. After these calculations we are left with

2ξ̄νGµν
L = ∇̄ρ{−ξ̄ν∇̄ρhµν − ξ̄ρ∇̄µh + ξ̄ρ∇̄νhµν + ξ̄ν∇̄µhρν + ξ̄µ∇̄ρh − ξ̄µ∇̄νhρν}

+
2Λ

(D − 2)
hξ̄µ − 2Λ

(D − 2)
hνµξ̄ν +

2Λ
(D − 2)(D − 1)

(hνµξ̄ν − hξ̄µ)

+(∇̄ρ ξ̄ν)(∇̄ρhµν)− (∇̄ρξ̄µ)(∇̄ρh) + (∇̄ρξ̄µ)(∇̄νhρν) .

We will look at the last three terms closely:

(∇̄ρξ̄ν)(∇̄ρhµν) = ∇̄ρ(hµν∇̄ρξ̄ν)− hµν(∇̄ρ∇̄ρξ̄ν) .

Operating on Killing vector equation, that is ∇̄µξ̄ν + ∇̄ν ξ̄µ = 0, with ∇̄µ, one gets

∇̄µ∇̄µξ̄ν + ∇̄µ∇̄ν ξ̄µ = 0 .
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The second term can be written in the commutator form that is

¯ ξ̄ν + [∇̄µ, ∇̄ν]ξ̄µ = 0 ,

or simply

¯ ξ̄ν = − 2Λ
(D − 2)

ξ̄ν .

Using this relation, we have

(∇̄ρξ̄ν)(∇̄ρhµν) = ∇̄ρ(hµν∇̄ρξ̄ν) +
2Λ

(D − 2)
hµν ḡνλξ̄λ ,

and

(∇̄ρξ̄µ)(∇̄ρh) = −∇̄ρ(h∇̄µξ̄ρ) +
2Λ

(D − 2)
hξ̄µ .

Using the property of a Killing vector,

(∇̄ρξ̄µ)(∇̄νhρν) = −∇̄ρ(hρν∇̄µξ̄ν)−
2Λ

(D − 2)(D − 1)
(ξ̄νhµν − ξ̄µh) .

Finally collecting these results, we have

2ξ̄νGµν
L = ∇̄ρ{−ξ̄ν∇̄ρhµν − ξ̄ρ∇̄µh + ξ̄ρ∇̄νhµν + ξ̄ν∇̄µhρν + ξ̄µ∇̄ρh

−ξ̄µ∇̄νhρν + hµν∇̄ρξ̄ν + h∇̄µξ̄ρ − hρν∇̄µξ̄ν}.
(22)

Since the charge densities are surface terms, the Killing charges become

Qµ(ξ̄) = 1
4Ω(D−2)GD

∮
Σ

dSi{−ξ̄ν∇̄ihµν − ξ̄i∇̄µh + ξ̄i∇̄νhµν + ξ̄ν∇̄µhiν

+ξ̄µ∇̄ih − ξ̄µ∇̄νhiν + hµν∇̄iξ̄ν + h∇̄µξ̄i − hiν∇̄µξ̄ν} .
(23)

Here dSi ≡ √−detḡ dΩi where i ranges over (1, 2, ...., D − 2); the charge is normalized by dividing with
the (D-dimensional) Newton’s constant GD and the solid angle ΩD−2. We would like to emphasize a very
important point which is often missed: Eqn. (23) gives the conserved charges for spacetimes that are
asymptotically AdS, which was our goal. But the obviously the formula works for Λ = 0, namely the
asymptotically flat, case. As we have made no assumption on the choice of coordinates, our formula is a
coordinate independent expression. Therefore, before calculating the conserved charges Q0, let us check our
claim of coordinate or the ”gauge” invariance of our definition, and also we should check if it goes to the
ADM charges in the limit of an asymptotically flat background (For Cartesian coordinates that is ∇̄j → ∂j)
in which case our timelike Killing vector is ξ̄µ = (1, 0) .

First we will look at the gauge-invariance. Under an infinitesimal diffeomorphism, generated by a vector
ζ ( not to be confused with our Killing vector! ), the deviation part of the metric transforms as

δζhµν = ∇̄µζν + ∇̄νζµ . (24)

First we will look at the linear Ricci scalar, we have

δζRL = −¯ δζh + ∇̄σ∇̄µδζhσµ − 4Λ
(D − 2)

∇̄µζµ .

which yields

δζRL = −ḡµν ¯ (∇̄µζν + ∇̄νζµ) + ∇̄σ∇̄µ(∇̄σζµ + ∇̄µζσ)− 4Λ
(D − 2)

∇̄µζµ

= −2 ¯ ∇̄µζµ + ∇̄σ∇̄µ∇̄σζµ + ∇̄σ ¯ ζσ − 4Λ
(D − 2)

∇̄µζµ .
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Let us look at the second and third terms carefully:

[∇̄µ, ∇̄σ]ζµ = ∇̄µ∇̄σζµ − ∇̄σ∇̄µζµ ,

∇̄µ∇̄σζµ =
2Λ

(D − 2)
ζσ + ∇̄σ∇̄µζµ .

Therefore, we have

∇̄σ∇̄µ∇̄σζµ =
2Λ

(D − 2)
∇̄σζσ + ¯ ∇̄µζµ .

In the third term the same calculations can be done, yielding

∇̄σ ¯ ζσ =
2Λ

(D − 2)
∇̄βζβ + ¯ ∇̄σζσ

We have the background gauge invariance of the linear Ricci scalar

δζRL = 0 .

Therefore

δζGL
µν = δζRL

µν − 2Λ
(D − 2)

δζhµν.

We then have

δζGL
µν =

1
2
(−¯ ∇̄µζν − ¯ ∇̄νζµ − ∇̄µ∇̄ν∇̄βζβ − ∇̄µ∇̄ν∇̄αζα

+∇̄σ∇̄ν∇̄σζµ + ∇̄σ∇̄ν∇̄µζσ + ∇̄σ∇̄µ∇̄σζν + ∇̄σ∇̄µ∇̄νζσ)

− 2Λ
(D − 2)

(∇̄µζν + ∇̄νζµ) .

Just as before, let us look at the terms that are in the second line: The fifth term is:

∇̄σ∇̄ν∇̄σζµ =
2Λ

(D − 2)(D − 1)
(ḡνµ∇̄σζσ − ḡσµ∇̄σζν) + ∇̄σ∇̄σ∇̄νζµ .

The sixth term is:

∇̄σ∇̄ν∇̄µζσ =
2Λ

(D − 2)(D − 1)
(∇̄νζµ − ∇̄µζν) + ∇̄σ∇̄µ∇̄νζσ .

The third term is:

∇̄σ∇̄µ∇̄σζν =
2Λ

(D − 2)(D − 1)
(ḡµν∇̄σζσ − ḡσν∇̄σζµ) + ∇̄σ∇̄σ∇̄µζν .

The fourth term is:

∇̄σ∇̄µ∇̄νζσ =
2Λ

(D − 2)
∇̄µζν +

2Λ
(D − 2)(D − 1)

(∇̄µζν − ḡµν∇̄σζσ)

+
2Λ

(D − 2)
∇̄νζµ + ∇̄µ∇̄ν∇̄σζσ .

Collecting all these, terms we end up with

δζGL
µν = 0 ,
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which means that GL
µν is gauge-invariant. Therefore, we have δζRL

µν = 2Λ
(D−2)δζhµν .

Hence δζQµ = 0; that is, the Killing charge is indeed background gauge-invariant.
Now we will examine (23) in the limit of an asymptotically flat background, which should yield the ADM

charge. Let us just look at the mass to begin with. With ξ̄µ = (1, 0), we have ξ̄i = 0, ξ̄0 = 1 and ξ̄0 = −1 in
flat space with the metric ηµν = diag(−1, 1, 1, 1). We have h = −h00 + hii. Being in Cartesian coordinates,
we can replace the covariant derivatives with the partial derivatives (∇̄j → ∂j). Hence,

M =
1

4Ω(D−2)GD

∮
Σ

dSi{ξ̄0∂0hi0 − ξ̄0∂ih00 − ξ̄0∂ih − ξ̄0∂0hi0 + ∂jhij} .

Writing h explicitly yields

M =
1

4Ω(D−2)GD

∮
Σ

dSi{−∂ih00 − ∂ihjj + ∂ih00 + ∂jhij}

=
1

4Ω(D−2)GD

∮
Σ

dSi{∂jh
ij − ∂ihjj}

which is the usual ADM mass [3].
Instead of the metric, we could have worked with the vielbein and the spin connection ( as is done in

theories where there are fermions). Let us simply quote the final result for the expression of the charge in
that case:

Qa(ξ̄) =
1

4ΩD−2 GD

∫
∂M

dSi {−ξ̄a D̄b ϕi
b + ϕbi D̄b ξ̄a − ϕb

b D̄i ξ̄a + ξ̄a D̄i ϕb
b

−ξ̄i D̄a ϕb
b + ξ̄i D̄b ϕa

b − ξ̄b D̄i ϕab + ϕab D̄i ξ̄b + ξ̄b D̄a ϕib} . (25)

where the full vielbein is decomposed into a background and a deviation parts.

ea ≡ ēa + ϕa
b ēb. (26)

We choose the background to be AdS. The details are to be found in [6].

3. The Energy of Schwarzschild (Anti)de-Sitter Solutions

We can now evaluate the energy of Schwarzschild-de Sitter (SdS) solutions.
In static coordinates, the line element of D-dimensional SdS reads

ds2 = −
(

1 − (
r0

r
)D−3 − r2

l2

)
dt2 +

(
1 − (

r0

r
)D−3 − r2

l2

)−1

dr2 + r2dΩ2
D−2 , (27)

where l2 ≡ (D−2)(D−1)/2Λ > 0. The background (r0 = 0) Killing vector is ξ̄µ = (−1, 0), which is timelike
everywhere for AdS (l2 < 0), but remains timelike for dS (l2 > 0) only inside the cosmological horizon:
ḡµν ξ̄µξ̄ν = −(1 − r2

l2
) [2].

The D = 4 Case To see how far we can go with the de-Sitter case, let us concentrate on D = 4 first
and calculate the surface integral not at r → ∞, but at some finite distance r from the origin; this will not
be gauge-invariant, since energy is to be measured only at infinity. Nevertheless, for dS space (which has a
horizon that keeps us from going smoothly to infinity), let us first keep r finite as an intermediate step. The
integral becomes

E(r) =
r0

2G

(1 − r2

l2 )

(1 − r0
r − r2

l2 )
. (28)
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For AdS, take r → ∞ and we get the usual mass r0
2G . For dS, we can only consider small r0 limit, which do

not change the location of the background horizon, that also yields r0
2G [2].

Energy For D Dimensions In this case h ≈ 0. From the line element g00, grr, ḡ00, ḡrr and the corre-
sponding hµν terms can be calculated. Since r0 = 0 for the background. We have

h00 = (
r0

r
)D−3 , ḡ00ḡ00h00 = h00 =

( r0
r )D−3

(1 − r2

l2 )2
. (29)

hrr =
( r0

r )D−3

(1 − ( r0
r )D−3 − r2

l2 )(1 − r2

l2 )
, hrr =

( r0
r )D−3(1 − r2

l2 )

(1 − ( r0
r )D−3 − r2

l2 )
. (30)

We have

Q0 =
4π

16πGD
lim

r→∞
rD−2{ξ̄0∇̄0hr0 − ξ̄0∇̄rh00 + h00∇̄rξ̄0 − hrr∇̄0ξ̄r + ∇̄νhrν}

where the constant factors come from our normalization of the charges and the integration element dSi.

Q0 =
4π

16πGD
lim

r→∞
rD−2{ξ̄0∇̄0hr0 − ξ̄0∇̄rh00 + h00∇̄rξ̄0 − hrr∇̄0ξ̄r + ∇̄0hr0 + ∇̄ih

ri} .

Playing with indices and setting h = 0 we get

Q0 =
4π

16πGD
lim

r→∞
rD−2{−∂rh00 + h00ḡ

00∂rḡ00 + ∂rhrr + hrr ḡrr∂rḡrr +
1
2

hrr ḡij∂r ḡij} .

In the limit of r → ∞ we get the energy in D-dimensions as

E =
(D − 2)
4GD

rD−3
0 . (31)

Here r0 can be arbitrarily large in the AdS case but must be small in dS [2].
The D = 3 Case Let us note that analogous computations can also be carried out in D = 3; the proper

solution to consider is

ds2 = −(1 − r0 −
r2

l2
)dt2 + (1 − r0 −

r2

l2
)−1dr2 + r2dφ2 , (32)

for which the energy is E = r0/2G again, but now r0 is a dimensionless constant and the Newton constant
G has dimensions of 1/mass [2, 9].

Adding electric charge will not change the answer in the solutions considered above ( except for the
D = 3 case, which is a little non-trivial.) We next consider the recently found D dimensional Kerr-AdS
solutions and compute their masses and angular momenta [10].

4. Conserved Charges of Higher D Kerr-AdS Spacetimes

Let us now calculate the conserved charges of the metrics [11] for D > 3. [We shall treat the special
D = 3 case at the end]. They have the Kerr-Schild form [12, 13]

ds2 = ds̄2 +
2M

U
(kµ dxµ)2 , (33)

in terms of the de Sitter metric

ds̄2 = −W (1 − Λ r2) dt2 + F dr2 +
N+ε∑
i=1

r2 + a2
i

1 + Λ a2
i

dµ2
i +

N∑
i=1

r2 + a2
i

1 + Λ a2
i

µ2
i dφ2

i

+
Λ

W (1 − Λ r2)

(N+ε∑
i=1

(r2 + a2
i ) µi dµi

1 + Λ a2
i

)2

. (34)
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Here ε = 0/1 for odd/even, dimensions and D = 2N + 1 + ε. The null 1-form reads

kµ dxµ = F dr + W dt −
N∑

i=1

ai µ2
i

1 + Λ a2
i

dφi , (35)

with

U ≡ rε
N+ε∑
i=1

µ2
i

r2 + a2
i

N∏
j=1

(r2 + a2
j ), W ≡

N+ε∑
i=1

µ2
i

1 + Λ a2
i

, F ≡ 1
1 − Λ r2

N+ε∑
i=1

r2 µ2
i

r2 + a2
i

. (36)

To find the energy and angular momenta corresponding to (33), we must compute the charges Q0 for the
corresponding Killing vectors: for the energy we shall take ξ̄µ = (−1,.0) and each angular momentum has
the appropriate unit entry (0, . . .1i . . . 0). Then

Q0 =
1

4ΩD−2GD

∫
Σ

dSr

{
g00∇̄0hr0 + g00∇̄rh00 + h0ν∇̄rξ̄ν − hrν∇̄0ξ̄ν + ∇̄νhrν

}
. (37)

Using the energy Killing vector, we obtain

ED =
1

4ΩD−2GD

∫
Σ

dSr

{
g00g

rr∂rh00 +
1
2

h00grr∂rg00 −
m

U
g00∂rg00 + 2m∂rU−1

+
2m

U
grr∂rgrr −

m

U
grrkikj∂rgij +

m

U
gij∂rgij

}
. (38)

As in the previous section, to compute ED, one needs the large r behavior of the integrand I of (38); since

g00 → WΛr2, F → −1
Λr2

, U → rD−3, kφ → aφ

r2 , (39)

then

I =
2m

rD−2
[(D − 1)W − 1] . (40)

For the sake of completeness, let us also note how the determinant is calculated,

detg = −W (1 − Λr2)F
N∏

i=1

(r2 + a2
i )µ

2
i

1 + Λa2
i

detM . (41)

Here M is the matrix representing the coefficients of the form dµidµj in the metric, which can be expressed
as (no repeated index summation),

Mij = Aiδij + BiBj + CiCj (42)

where

Ai =
(r2 + a2

i )
1 + Λa2

i

, Bi =

√
(r2 + a2

N+ε)
1 + Λa2

N+ε

µi

µn

Ci =

√
Λ

W (1 − Λr2)
(
(r2 + a2

i )
1 + Λa2

i

− (r2 + a2
N+ε)

1 + Λa2
N+ε

)µi . (43)

Then we have

detM =
N+ε−1∏

i=1

Ai

N+ε−1∑
i=1

{B2
i

Ai
+

C2
i

Ai
+

N+ε−1∑
j �=i

B2
i C2

i

AiAj
−

N+ε−1∑
j �=i

BiBjCjCi

AiAj

}
. (44)
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Inserting (43) in the above equation, one gets

detM =
1

Wµ2
N+ε

N∏
i=1

1
1 + Λa2

i

. (45)

Using equations (45,41,40) the energy of the D dimensional rotating black hole becomes

ED =
m

Ξ

D−1−ε
2∑

i=1

{
1
Ξi

− (1 − ε)(
1
2
)
}

. (46)

where

Ξ ≡
D−1−ε

2∏
i=1

(1 + Λa2
i ), Ξi ≡ 1 + Λa2

i . (47)

This expression reduces to the standard limits ai → 0 and Λ → 0, and agrees (up to a constant factor) with
those of [14, 15].

The computation of angular momenta follows along similar lines. Consider a given, say that ith (which
we call the φ) component, i.e., the Killing vector ξµ

(i) = (0, ..., 0, 1i, 0, ..). Then the corresponding Killing
charge becomes

Q0 =
1

4ΩD−2GD

∫
Σ

dSr

{
gφφ∇̄0hrφ − gφφ∇̄rh0φ + h0ν∇̄rξ̄ν − hrν∇̄0ξ̄ν

}

=
1

4ΩD−2GD

∫
Σ

dSr

{
− gφφgrrg00∂rh φ

0

}
. (48)

Once again the integrand can be calculated to be

I =
(D − 1)2maiµ

2
i

rD−2(1 + Λa2
i )

. (49)

Putting the pieces together, the angular momentum is

Ji =
mai

ΞΞi
. (50)

This expression again agrees with [14, 15]. Note that, unlike in the energy expression, ε does not appear
here since even dimensional spaces have as many independent 2-planes as the odd dimensional spaces with
one lower dimension. For even dimensions, there is a nice relation between the energy and the angular
momentum E =

∑
i

Ji

ai
.

Having computed the desired conserved charges for Kerr-AdS spacetimes in D > 3, let us briefly turn
our attention to the D = 3 BTZ black hole [16]. This solution has long been studied but we recompute
the charges with our method for the sake of completeness. The BTZ black hole differs from its higher
dimensional counterparts in one very important aspect: for it, AdS is not the correct-vacuum-background
[16]. The full metric is

ds2 = (M − Λr2)dt2 +
dr2

−M + Λr2 + a2

4r2

− adt dφ + r2dφ2 , (51)

The background metric corresponds to M = 0 and AdS corresponds to M = −1. Only AdS with J = 0 is
allowed for M < 0: the others have naked singularities. So we consider M > 0 and compute the charges
following our calculations above (about the M = 0 background.) We get the usual answers

E = M , J = a . (52)
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BTZ black holes also solve the more general topologically massive gravity equations, where the Einstein
term is augmented by the Cotton tensor [17],

Gµν + Λgµν +
1
µ

Cµν = κτµν . (53)

Conserved charges in this model were obtained in [4], in terms of those of the Einstein model Qµ
E ,

Qµ(ξ̄) = Qµ
E(ξ̄) +

1
2µ

∮
dSi

{
εµiβGL

νβ ξ̄ν + ενi
βGL

µβ ξ̄ν + εµνβGL i
β ξ̄ν

}
(54)

+
1
2µ

Qµ
E(ε∇̄ξ̄) ,

where Qµ
E(ε∇̄ξ̄) is the Einstein form but ξ̄ is replaced with its curl. Once the contributions of the Cotton

parts are computed the mass and the angular momentum of the BTZ black hole reads:

E = M − Λa

µ
, J = a − M

µ
, (55)

a shift in values that may be compared with those for gravitational anyons [18], (linearized) solutions of
TMG but not of pure D=3 Einstein.

There are also several other solutions which have topologically non-trivial asymptotics which we shall
briefly touch here. Some of these solutions have negative total energy compared to the background spacetimes
[6].

The AdS Soliton
Consider the “AdS Soliton” of Horowitz-Myers [19]

ds2 =
r2

42

[(
1 − rp+1

0

rp+1

)
dτ2 +

p−1∑
i=1

(dxi)2 − dt2

]
+

(
1 − rp+1

0

rp+1

)−1
42

r2
dr2, (56)

which was obtained by the double analytic continuation of a near extremal p-brane solution. Here xi

(i = 1, ..., p− 1) and the t variables denote the coordinates on the “brane” and r ≥ r0. To avoid a conical
singularity at r = r0, τ necessarily has a period β = 4π42/(r0(p + 1)). Its energy was computed in [19]
using the method of [20]. Here we compute the energy using the method described so far. The background
(r0 = 0) is the usual globally AdS spacetime in the horospherical coordinates, with the timelike Killing
vector

ξ̄µ = (−1, 0, ..., 0). (57)

Defining the metric perturbation as outlined above and carrying out the integrations, we have

E = − VD−3 π

(D − 1)ΩD−2 GD

rD−2
0

4D−2
, (58)

where VD−3 is the volume of the compact dimensions. Up to trivial charge normalizations, our result matches
that of [19], which uses the energy definition of Hawking-Horowitz [20].

Eguchi-Hanson Solitons
Recently, Clarkson and Mann [21] found very interesting solutions to the odd dimensional cosmological

(for both signs) Einstein equations. These solutions resemble the even dimensional Eguchi-Hanson metrics
[22] - thus the name Eguchi-Hanson solitons - and asymptotically approach AdS/Zp, where p ≥ 3. As shown
in [21], these solutions have lower energy compared to the global AdS spacetimes (or the global AdS/Zp

spacetimes). The energies of these solutions (for the case of 5 dimensions) were computed in [21] with the
help of the boundary counterterm method [23, 24]. It is important to note that boundary counterterm
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method needs to be worked out for a given fixed dimension. Here, we use the prescription outlined in the
previous section and find the energy of the EH solitons for generic odd dimensions. For a detailed description
of the metrics, we refer the reader to [21]. We simply quote their result: the EH soliton reads

ds2 = −g(r) dt2 +
(

2r

D − 1

)2

f(r)


dψ +

(D−3)/2∑
i=1

cos θi dφi




2

+
dr2

g(r) f(r)
+

r2

D − 1

(D−3)/2∑
i=1

(
dθ2

i + sin2 θi dφ2
i

)
, (59)

and the metric functions are given by

g(r) = 1 ∓ r2

42
, f(r) = 1 −

(a

r

)D−1

. (60)

In the AdS case, to remove the string-like singularity at r = a, one finds that ψ has a period 4π/p and there
is a constraint on the parameter a:

a2 = 42 (
p2

4
− 1) . (61)

The background is obtained simply by setting a = 0 in (60). The details of the energy (the charge for
ξ̄µ = (−1, 0, ..., 0)) computation is rather lengthy and not particularly illuminating to present here. Instead,
we will only write down our result. For convenience, we define

E(ξ̄) ≡ 1
4ΩD−2 GD

∫
∂M

dSr E(ξ̄) ,

and only present E(ξ̄), in the r → ∞ limit:

lim
r→∞

E(ξ̄) = − 2 aD−1

42 (D − 1)(D−1)/2

(D−3)/2∏
i=1

sin θi. (62)

After the angular integrations are carried out, one obtains the energy of the EH soliton in generic odd
dimensions

E = − (4π)(D−1)/2 aD−1

p 42 (D − 1)(D−1)/2 ΩD−2 GD
. (63)

Specifically, when D = 5, one finds

E = − a4

4 p 42 G5
. (64)

We note that this result differs from that of [21] in two respects: one of which is a trivial numerical factor
that can be attributed to normalization of the conserved charges; the second, and the more important one,
is the presence of an additive constant which is exactly equal to the energy of the AdS/Zp spacetime. Recall
that in the formalism we use, the background always has zero energy, unlike the boundary counterterm
method for which it has a finite energy.

“Taub-NUT-Reissner-Nordström” solution
We can compute the masses of the new charged solutions [25, 26, 27] in AdS spacetimes that have

non-trivial topology. Here, we only consider two examples that were presented in [25]. In D = 4, the
“Taub-NUT-Reissner-Nordström” solution reads

ds2 = −F (r) (dt − 2 N cos θ dφ)2 +
dr2

F (r)
+ (r2 + N2) (dθ2 + sin2 θ dφ2) , (65)
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where N is the nut charge and

F (r) =
r4 + (42 + 6N2) r2 − 2 m 42 r − 3N4 + 42 (q2 − N2)

42 (r2 + N2)
. (66)

To find the energy of this solution, the correct background (that has zero energy) needs to be carefully
chosen. If we naively set m = q = 0 and the nut charge N = 0, then the energy of the solution with nonzero
m, q, N diverges. This is to be expected since N = 0 solution is not in the same topological class as that
of the N �= 0 solutions. The background has to be chosen as m = q = 0 but N �= 0 as was shown by
Deser-Soldate [28] in the case of the (asymptotically locally flat) Kaluza-Klein monopole. In the light of
these arguments, one gets

E =
m

G4
. (67)

In D = 6, the metric, for the details of which we refer to [25], reads

ds2 = −F (r) (dt − 2 N cos θ1 dφ1 − 2 N cos θ2 dφ2)2 +
dr2

F (r)
+(r2 + N2) (dθ2

1 + sin2 θ1 dφ2
1 + dθ2

2 + sin2 θ2 dφ2
2) , (68)

where now

F (r) =
q2 (3r2 + N2)
(r2 + N2)4

+
1

342(r2 + N2)2
[
42(−3N4 − 6mr + 6N2r2 + r4)− 15N6 + 45N4r2 + 15N2r4 + 3r6

]
.

Once again the correct background is found by setting m = q = 0 but N �= 0, and the energy is

E = 12
m

G6
. (69)

In both cases, the electric charge q does not appear in the total energy just like in the case of ordinary
Reissner-Nordström solution.

5. Higher curvature Gravity models

In flat backgrounds, the ghost freedom of low energy string theory requires the quadratic corrections
to Einstein’s gravity to be of the Gauss-Bonnet (GB) form, an argument that should carry over to the AdS
backgrounds. Below we construct and compute the energy of various asymptotically (A)dS spaces that solve
the generic Einstein plus quadratic gravity theories, particularly the Einstein-GB model [2, 29].

At quadratic order, the generic action is

I =
∫

dDx
√−g{ 1

κ
R + αR2 + βR2

µν + γ(R2
µνρσ − 4R2

µν + R2)} (70)

In D = 4, the GB part (γ terms) is a surface integral and plays no role in the equations of motion. In D > 4,
on the contrary, GB is the only viable term, since non-zero α, β produce ghosts [30]. Here κ = 2ΩD−2GD,
where GD is the D-dimensional Newton’s constant [2].

After somewhat lengthy calculations we find the equations of motion

1
κ
(Rµν − 1

2
gµνR) + 2αR(Rµν − 1

4
gµνR) + (2α + β)(gµν −∇µ∇ν)R

+ 2γ[RRµν − 2RµσνρRσρ + Rµσρτ Rν
σρτ − RµσRν

σ − 1
4

gµν(R2
τλσρ − 4R2

σρ + R2)]

+ β (Rµν − 1
2

gµνR) + 2β(Rµσνρ − 1
4

gµνRσρ)Rσρ = τµν . (71)
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In the absence of matter, flat space is a solution of these equations; but more important is that (A)dS is
also a solution [2]. The cosmological constant can be found using (71):

1
κ
(R̄µν − 1

2
ḡµνR̄) + 2αR̄(R̄µν − 1

4
ḡµνR̄)

+ (2α + β)(ḡµν
¯ − ∇̄µ∇̄ν)R̄

+ 2γ[R̄R̄µν − 2R̄µσνρR̄σρ + R̄µσρτ R̄ν
σρτ

− 2R̄µσR̄ν
σ − 1

4
ḡµν(R̄2

τλσρ − 4R̄2
σρ + R̄2)]

+ β ¯(R̄µν − 1
2

ḡµνR̄) + 2β(R̄µσνρ −
1
4

ḡµνR̄σρ)R̄σρ = 0 . (72)

The terms that have covariant derivatives will be zero. The other terms can be calculated one by one and
they give us

− 1
2Λκ

=
(D − 4)
(D − 2)2

(Dα + β) + γ
(D − 4)(D − 3)
(D − 2)(D − 1)

, (73)

where Λ �= 0 [2, 31]. Several comments are in order here: In the string-inspired Einstein-GB model (α = β = 0
and γ > 0), only AdS background (Λ < 0) is allowed (the Einstein constant κ is positive in our conventions).
String theory is known to prefer AdS to dS [2] and we can see why this is so in the uncompactified theory.
Another interesting limit is the “traceless” theory (Dα = −β), which, in the absence of a γ term, does not
allow constant curvature spaces unless the Einstein term is also dropped. For D = 4, the γ term drops
out, and the pure quadratic theory allows (A)dS solutions with arbitrary Λ. For D > 4, (73) leaves a
two-parameter set (say α, β) of allowed solutions [2].

Now we will linearize the equations of motion to first order in hµν and define the total energy-momentum
tensor Tµν as we did before.

Tµν(h) = Tµν (ḡ) + GL
µν

{
1
κ

+
4ΛDα

(D − 2)
+

4Λβ

(D − 1)
+

4Λγ(D − 3)(D − 4)
(D − 1)(D − 2)

}

+(2α + β)
(

ḡµν
¯ − ∇̄µ∇̄ν +

2Λ
(D − 2)

ḡµν

)
RL

+β

(
¯GL

µν − 2Λ
(D − 1)

ḡµνRL

)

−2Λ2hµν

{
1

2Λκ
+

(D − 4)
(D − 2)2

(Dα + β) +
γ(D − 4)(D − 3)
(D − 2)(D − 1)

}
. (74)

One has Tµν(ḡ) = 0 and the last term also vanishes, yielding

Tµν = GL
µν

{
− 1

κ
+

4ΛD

(D − 2)2
(2α +

β

(D − 1)
)
}

+(2α + β)
(

ḡµν
¯ − ∇̄µ∇̄ν +

2Λ
(D − 2)

ḡµν

)
RL

+β

(
¯GL

µν − 2Λ
(D − 1)

ḡµνRL

)
. (75)

This is a background conserved tensor (∇̄µTµν = 0) as can be checked explicitly. An important aspect
of (75) is the sign change of the 1

κ term relative to Einstein theory, due to the GB contributions. Hence
in the Einstein-GB limit, we have Tµν = −Gµν

L/κ, with the overall sign exactly opposite to that of the
cosmological Einstein theory. However, this does not mean that E is negative there [2, 32].

There remains now to obtain a Killing energy expression from (75), namely, to write ξ̄νT µν as a surface
integral. The first term is the usual AD piece (23). The term in the middle (which has the coefficient 2α+β),
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GÜLLÜ, TEKİN

is easy to handle. First we take the indices up and than operate on this equation with a Killing vector, say
ξ̄ν ,

ξ̄µ ¯RL − ξ̄ν∇̄µ∇̄νRL +
2Λ

(D − 2)
ξ̄µRL. (76)

In the first term the covariant derivative must be taken outside to get surface terms:

ξ̄µ∇̄α∇̄αRL = ∇̄α(ξ̄µ∇̄αRL)− (∇̄αξ̄µ)(∇̄αRL)

= ∇̄α(ξ̄µ∇̄αRL)− ∇̄α(RL∇̄αξ̄µ) + RL( ¯ ξ̄µ)

= ∇̄α{ξ̄µ∇̄αRL − RL∇̄αξ̄µ} − 2Λ
(D − 2)

RLξ̄µ .

In the second term of (76), we can easily change the places of covariant and contravariant derivatives because
of the Ricci scalar RL, that is

ξ̄ν∇̄µ∇̄νRL = ξ̄ν∇̄ν∇̄µRL ,

and making the ν → α substitution, we have

ξ̄α∇̄α∇̄µRL = ∇̄α(ξ̄α∇̄µRL)− (∇̄αξ̄α)(∇̄µRL)

= ∇̄α(ξ̄α∇̄µRL) ,

where ∇̄αξ̄α is zero because of the Killing equation. Inserting these results into (76), the surface terms can
be taken out

ξ̄µ ¯RL − ξ̄ν∇̄µ∇̄νRL +
2Λ

(D − 2)
ξ̄µRL

= ∇̄α{ξ̄µ∇̄αRL − RL∇̄αξ̄µ} − 2Λ
(D − 2)

RLξ̄µ +
2Λ

(D − 2)
RLξ̄µ − ∇̄α(ξ̄α∇̄µRL)

= ∇̄α{ξ̄µ∇̄αRL − ξ̄α∇̄µRL + RL∇̄µξ̄α} .

The last term in (75) can be written as a surface term plus extra terms:

ξ̄ν
¯Gµν

L = ξ̄ν∇̄α∇̄αḠµν
L

= ∇̄α{ξ̄ν∇̄αGµν
L } − (∇̄αξ̄ν)(∇̄αGµν

L ) ,

where we have put the Killing vector inside the covariant derivative. In the second term we can freely move
the α indices and afterwards, we can also take terms inside the covariant derivative with an extra term.
Hence, we get

ξ̄ν
¯Gµν

L = ∇̄α{ξ̄ν∇̄αGµν
L − Gµν

L ∇̄αξ̄ν} + Gµν
L

¯ ξ̄ν .

Now we can add and subtract the terms ∇̄α{ξ̄ν∇̄µGαν
L } and ∇̄α{Gαν

L ∇̄µξ̄ν}

ξ̄ν
¯Gµν

L = ∇̄α{ξ̄ν∇̄αGµν
L − ξ̄ν∇̄µGαν

L − Gµν
L ∇̄αξ̄ν + Gαν

L ∇̄µξ̄ν}
+Gµν

L
¯ ξ̄ν + ∇̄α{ξ̄ν∇̄µGαν

L } − ∇̄α{Gαν
L ∇̄µξ̄ν}.

If we expand the last two terms we can see that: (i) When the covariant derivative hits on the Killing vector
ξ̄ν , it will be zero in the first one with the use of Killing vector equation, because α and ν are symmetric in
Gαν

L . (ii) With the help of Bianchi identity, the term (∇̄αGαν
L )(∇̄µ ξ̄ν) is zero. Hence we are left with

ξ̄ν
¯Gµν

L = ∇̄α{ξ̄ν∇̄αGµν
L − ξ̄ν∇̄µGαν

L − Gµν
L ∇̄αξ̄ν + Gαν

L ∇̄µξ̄ν}
+Gµν

L
¯ ξ̄ν + ξ̄ν∇̄α∇̄µGαν

L − Gαν
L ∇̄α∇̄µξ̄ν . (77)
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We can write ξ̄ν
¯Gµν

L as a surface term. Collecting everything, the final form of the conserved charges
for the generic quadratic theory reads

Qµ(ξ̄) = {− 1
κ

+
8Λ

(D − 2)2
(αD + β)}

∫
dD−1x

√−ḡ ξ̄ν Gµν
L

+(2α + β)
∫

dSi

√−ḡ{ξ̄µ∇̄iRL − ξ̄i∇̄µRL + RL∇̄µξ̄i}

+β

∫
dSi

√−ḡ{ξ̄ν∇̄iGµν
L − ξ̄ν∇̄µGiν

L − Gµν
L ∇̄iξ̄ν + Giν

L ∇̄µξ̄ν}. (78)

Now let us compute the energy of an asymptotically SdS geometry that might be a solution to our generic
model. Should such a solution exist, we only require its asymptotic behavior to be

h00 ≈ +
(r0

r

)D−3

, hrr ≈ +
(r0

r

)D−3

+ O(r2(D−2)
0 ). (79)

It is easy to see that for asymptotically SdS spaces the second and the third lines of (78) do not contribute,
since for any Einstein space, to linear order

RL
µν =

2Λ
D − 2

hµν, (80)

which in turn yields RL = ḡµνRL
µν − [2Λ/(D−2)]h = 0 and thus GL

µν = 0 in the asymptotic region. Therefore
the total energy of the full (α, β, γ) system, for geometries that are asymptotically SdS, is given only by the
first term in (78),

ED =
{
−1 +

8Λκ

(D − 2)2
(αD + β)

}
(D − 2)
4GD

rD−3
0 , D > 4, (81)

where γ is implicitly assumed not to vanish. For D = 4, equivalently from (74), it reads (for models with
an explicit Λ)

E4 = {1 + 2Λκ(4α + β)} r0

2G4
. (82)

In D = 3, the GB density vanishes identically and the energy expression has the same form of the D = 4
model, with the difference that r0 comes from the metric (32) [2].

From (81), the asymptotically SdS solution seemingly has negative energy, in the Einstein-GB model:

E = −(D − 2)
4GD

rD−3
0 . (83)

While this is, of course, correct in terms of the usual SdS signs, their exact form is [32]

ds2 = g00dt2 + grrdr2 + r2dΩD−2 , (84)

−g00 = g−1
rr = 1 +

r2

4κγ(D − 3)(D − 4)

×


1 ±

[
1 + 8γ(D − 3)(D − 4)

rD−3
0

rD−1

] 1
2


 . (85)

Note that there is a branching here, with qualitatively different asymptotics: Schwarzschild and Schwarzschild-
AdS,

−g00 = 1 −
(r0

r

)D−3

,

= 1 +
(r0

r

)D−3

+
r2

κγ(D − 3)(D − 4)
. (86)
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GÜLLÜ, TEKİN

[Here we restored γ, using κγ(D − 3)(D − 4) = −l2 .] The first solution has the usual positive (for positive
r0 of course) ADM energy E = +(D− 2)rD−3

0 /4GD, since the GB term does not contribute when expanded
around flat space. On the other hand, the second solution which is asymptotically SdS, has the wrong sign
for the “mass term”. However, to actually compute the energy here, one needs our energy expression (78),
and not simply the AD formula which is valid only for cosmological Einstein theory. Now from (86), we have

h00 ≈ −
(r0

r

)D−3

, hrr ≈ −
(r0

r

)D−3

+ O(r2(D−2)
0 ) , (87)

whose sign is opposite to that of the usual SdS. This sign just compensates the flipped sign in the energy
definition, so the energy (81) reads E = (D − 2)rD−3

0 /4GD and the AdS branch, just like the flat branch,
has positive energy, after the GB effects are taken into account also in the energy definition. Thus, for every
Einstein-GB external solution, energy is positive and AdS vacuum is stable [2, 32].

6. Conclusion

In this review, we have defined the energy of generic Einstein plus cosmological term plus quadratic
gravity theories in generic D dimensions, for both asymptotically flat and (A)dS spaces. We have computed
the masses and angular momenta of various solutions, including D dimensional Kerr-AdS solution.

Our construction is based on the existence of background Killing vectors. For the background, we have
chosen either constant curvature ( AdS) or flat spacetimes. In our formalism, the background always has
zero charge. We would like to stress that this review does not present new material but simply extend some
of the work we have done recently. The interested reader is referred to the original material cited in our
references.
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GÜLLÜ, TEKİN
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