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Abstract

We give an explicit characterization of the most general quasi-Hermitian operator H , the associated

metric operators η+, and η+-pseudo-Hermitian operators acting in C
2 . The latter represent the physical

observables of a model whose Hamiltonian and Hilbert space are respectively H and C
2 endowed with

the inner product defined by η+. Our calculations allows for a direct demonstration of the fact that the

choice of an irreducible family of observables fixes the metric operator up to a multiplicative factor.
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1. Introduction

Recently there has been a significant interest in devising a unitary quantum theory based on PT -
symmetric Hamiltonian operators such as H = p2 + ix3 that possess a real discrete spectrum [1–4]. A
key ingredient that allows for the formulation of such a quantum theory is a spectral theorem proven in [5]
(see also [6]) asserting that if a diagonalizable operator H acting in a separable Hilbert space has a discrete
spectrum, then its spectrum is real if and only if there is a positive-definite inner product 〈·, ·〉+ on H with
respect to which H is Hermitian. The inner product 〈·, ·〉+ may be conveniently expressed in terms of a
positive-definite (metric) operator η+ : H → H according to

〈·, ·〉+ = 〈·|η+·〉, (1)

where 〈·|·〉 is the defining inner product of H. The Hermiticity of H with respect to 〈·, ·〉+, i.e., the condition
〈·, H ·〉+ = 〈H ·, ·〉+, is equivalent to the η+-pseudo-Hermiticity [7] of H , namely

H† = η+Hη−1
+ . (2)

Another equivalent condition to the reality of the spectrum ofH is its quasi-Hermiticity [8], i.e., the existence
of an invertible operator ρ : H → H such that

h := ρ−1Hρ (3)
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is Hermitian with respect to 〈·|·〉, i.e., 〈·|h·〉 = 〈h · |·〉. We will call such an operator Hermitian, i.e., use the
defining inner product 〈·|·〉 of H to determine if an operator is Hermitian or not.
In [8], the authors propose a different approach to quantum mechanics in which the inner product of the

physical Hilbert space is not a priori fixed but determined by the choice of sufficiently many appropriate
observables. In order to make this statement more precise we first recall a few definitions.

Definition 1: Let H be a separable Hilbert space. Then a set S = {Oα} of bounded linear operators
Oα : H → H is said to be irreducible if there is no proper subspace of H that is left invariant by all
Oα’s, i.e., the only subspace H′ of H satisfying the following condition is H.

Oαψ
′ ∈ H′, for all ψ′ ∈ H′ and all Oα ∈ S.

Definition 2: Let H be a separable Hilbert space. Then a set S = {Oα} of quasi-Hermitian linear
operators Oα : H → H is said to be compatible if there is an invertible bounded operator ρ : H → H
such that ρ−1Oαρ is Hermitian for all Oα ∈ S.

The condition that ρ−1Oαρ is Hermitian is equivalent to the existence of a positive-definite (metric) operator
η+ such that Oα is η+-pseudo-Hermitian [5]. Thus, S = {Oα} is a compatible set if and only if all Oα are
η+-pseudo-Hermitian for some metric operator η+.
We can express the main result of [8] as:

Theorem: Up to a multiplicative factor there is a unique positive-definite (metric) operator η+ such
that all the elements of a compatible irreducible set S = {Oα} of operators is η+-pseudo-Hermitian.
Equivalently, there is a (positive-definite) inner product 〈·, ·〉+ on H such that all Oα are Hermitian
with respect to 〈·, ·〉+, and this inner product is unique up to a trivial multiplicative factor.

The purpose of this article is to conduct a thorough investigation of the implementation of the above-
mentioned developments to the simplest nontrivial class of quantum systems, namely the two-level systems
for which H is C2 endowed with the Euclidean inner product. In particular, we

• compute the most general form of quasi-Hermitian operators,

• find the explicit form of the most general metric operator η+ that renders a given quasi-Hermitian
operator η+-pseudo-Hermitian,

• determine the class of all quasi-Hermitian operators O that together with the given one (H) form a
compatible irreducible set, and

• show by an explicit calculation how the choice of such an operator fixes η+ up to a scale factor.

In the remainder of this paper H will denote C2 endowed with the Euclidean inner product, the elements
of H will be represented by column vectors, and the linear operators L : H → H will be identified with their
matrix representations in the standard basis of C2. In particular, both the identity operator acting in C2

and the 2× 2 identity matrix will be denoted by I.

2. Quasi-Hermitian Operators and the Associated

Metric Operators

It is clear that every quasi-Hermitian operator H is necessarily diagonalizable and has a real spectrum.
These conditions hold if and only if H is η+-pseudo-Hermitian for a positive-definite (metric) operator η+,
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[5, 6]. Furthermore, H is η+-pseudo-Hermitian if and only if its traceless part H0 := H − 1
2 tr(H)I is

η+-pseudo-Hermitian.1 As a result we can confine our attention to traceless operators:

H0 =
(

a b

c −a

)
with a, b, c ∈ C. (4)

Next, we use the conditions that H0 is diagonalizable and its eigenvalues are real and have opposite sign to
infer that detH0 = −(a2 + bc) is real and non-positive. This in turn implies that the eigenvalues of H0 are
given by ±E where E :=

√
a2 + bc. The case E = 0 corresponds to the trivial degenerate case where H0 is

the zero operator.
The converse of the above argument also holds, i.e., the condition a2 + bc ∈ R+ ensures that H is a

nonzero quasi-Hermitian operator. Relaxing the tracelessness condition, we have the following form for the
most general quasi-Hermitian operator acting in H.

H = H0 + qI =
(
q + a b

c q − a

)
, (5)

where q ∈ R, a, b, c ∈ C, and a2 + bc ∈ [0,∞).
An alternative parametrization of H0 that simplifies its diagonalization is [9]

H0 = E
(

cos θ e−iϕ sin θ
eiϕ sin θ − cos θ

)
, (6)

where E ∈ [0,∞), θ, ϕ ∈ C, �(θ) ∈ [0, π) and �(ϕ) ∈ [0, 2π).2 The adjoint H†
0 of H0 and any linearly

independent pair of eigenvectors |φn〉 of H†
0 are given by

H†
0 = E

(
cos θ∗ e−iϕ∗

sin θ∗

eiϕ
∗
sin θ∗ − cos θ∗

)
, (7)

|φ1〉 = n1

(
cos θ∗

2

eiϕ
∗
sin θ∗

2

)
, |φ2〉 = n2

(
sin θ∗

2

−eiϕ∗
cos θ∗

2

)
, (8)

where n1, n2 ∈ C − {0} are arbitrary.
The most general positive-definite metric operator η+ that renders H0 (and hence H) η+-pseudo-

Hermitian is given by [10, 11]

η+ =
2∑

n=1

|φn〉〈φn| = k
(

au+ b e−iϕ(uζ − ζ∗)
eiϕ

∗
(uζ∗ − ζ) ei(ϕ

∗−ϕ)(a+ bu)

)
, (9)

where

a := | cos θ
2
|2, b := | sin θ

2
|2, ζ := sin θ

2
cos θ∗

2
, (10)

k := |n2|2, u := |n1/n2|2.

Note that the parameters a, b, ζ are determined by θ and ϕ that fix H0 while k and u characterize the freedom
of the choice of η+. In particular, changing k corresponds to a trivial scaling of η+ and the associated inner
product (1).
For later use we introduce the set U

H
consisting of all the metric operators (9) such that H is η+-pseudo-

Hermitian.
1This is because the eigenvalues of H and hence its trace are real.
2� and � stand for the real and imaginary parts of their argument.
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3. Irreducible Sets of Compatible Quasi-Hermitian

Operators

Given a linear operator acting in C2, the eigenspaces associated with each eigenvalue is an invariant
subspace of the operator. This implies that a pair of (diagonalizable quasi-Hermitian) operators have a
common proper invariant subspace, if they share an eigenvector. In other words, they form an irreducible
set, if they have no common eigenvectors. In light of this observation, to construct an irreducible set of
compatible quasi-Hermitian operators one needs to supplement a given quasi-Hermitian operator H with a
linear operator H ′ that is η+-pseudo-Hermitian for some η+ ∈ UH and do not share any eigenvector with H .
We shall first consider the problem of the characterization of a general quasi-Hermitian operator that

is compatible with H . In other words, we shall construct the most general quasi-Hermitian operator,
H ′ = H ′

0 + q
′I with

H ′
0 =

(
a′ b′

c′ −a′

)
, (11)

a′, b′, c′ ∈ C, a′2 + b′c′ ∈ [0,∞) and q′ ∈ R, such that H ′† = η+H ′η−1
+ for a metric operator η+ of the form

(9). This in turn implies H ′
0
† = η+H ′

0η
−1
+ or alternatively

H ′
0
†
η+ = η+H ′

0. (12)

This relation leads to four complex equations for the three unknowns a′, b′ and c′. These equations that
involve the fixed complex constants θ, ϕ (alternatively a, b, ζ) and the free real positive parameter u are not
independent. They can be reduced to the following three simpler equations.

�(λb′) = r�(a′), (13)

�(λc′∗) = s�(a′), (14)

sb′ − rc′∗ = 2λ∗�(a′), (15)

where

λ := eiϕ
∗
(uζ∗ − ζ), r := e2�(ϕ)(a+ bu), s := au+ b. (16)

The parameters a′, b′, and c′ entering the expression for H ′
0 are furthermore subject to the constraint

a′2 + b′c′ ∈ [0,∞), i.e.,

�(a′2 + b′c′) ≥ 0, (17)

�(a′2 + b′c′) = 0. (18)

Note, however, that in view of the η+-pseudo-Hermiticity of H ′
0 and the positive-definiteness of η+, H ′

0 is
Hermitian with respect to the positive-definite inner product (1). This in turn implies that it is diagonalizable
and has a real spectrum. As a result, we expect conditions (17) and (18) not to lead to any further restrictions
on the possible values of a′, b′, and c′. In the following we shall first solve (13)–(15) and check by explicit
calculation that indeed (17) and (18) are automatically satisfied.
Before exploring (13)–(15), we note the following useful identity:

ζ =
1
2
(sin[�(θ)] + i sinh[�(θ)]) . (19)

which follows from (10) upon the application of Euler’s formula. We can use (19) to infer the equivalence of
the conditions: θ = 0 and ζ = 0.3 Another consequence of (19) is that for all nonzero values of ζ, λ = 0 if
and only if ζ∗/ζ is real and equal to u. In this case, ζ and hence θ must be real and u = 1.

3Recall that �(θ) ∈ [0, π).
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Now, we are in a position to analyze (13)–(15), (17) and (18). We do this by considering the following
two cases separately.

Case 1) λ = 0: This is equivalent to setting (1) ζ = θ = 0, or (2) ζ, θ ∈ R and u = 1. In this case
(13)–(15) yield

�(a′) = 0, c
′ = r−1s b

′∗ =
(
au+ b
a+ bu

)
e−2�(ϕ)

b
′∗, (20)

where �(a′) = a′ and b′ are respectively real and complex free parameters. In view of (20), it is not
difficult to check that indeed (17) and (18) are automatically satisfied.

Case 2) λ �= 0 where either (3) u �= 1 and ζ, θ �= 0, or (4) ζ and θ are not real. In this case we can
simplify (15) by multiplying its both sides by λ. Then the imaginary part of the resulting equation is
automatically satisfied by virtue of (13) and (14), and its real part yields

s�(λb′)− r�(λc′∗) = 2|λ|2�(a′). (21)

We can solve (13), (14), and (21) to obtain:

b′ = λ−1[w + ir�(a′)] = e−iϕ∗
w + ie−iϕ(a+ bu)�(a′)

uζ∗ − ζ , (22)

c′ = (rλ∗)−1[sw − 2|λ|2�(a′)− irs�(a′)]

=
eiϕ[(au+ b)e−2�(ϕ)w − 2|uζ − ζ∗|2�(a′)− i(a+ bu)(au+ b)�(a′)]

(uζ − ζ∗)(a+ bu) , (23)

where w ∈ R and a′ ∈ C are arbitrary. Next, we impose the constraints (17) and (18). In view of the
fact that λ �= 0, (18) is equivalent to

�[|λ|2a′2 + (λb′)(λc′∗)∗] = 0. (24)

Expressing the left-hand side of this relation in terms of the real and imaginary parts of λb′ and λc′∗

and making use of (13), (14) and (21), we have checked that (24) is automatically satisfied. Finally
imposing (17) yields

|λ|2
[
�(a′)2 −�(a′)2 − 2r−1w�(a′)

]
+ rs�(a′)2 + r−1sw2 ≥ 0. (25)

We shall next prove that this inequality is also satisfied for all w ∈ R and a′ ∈ C irrespective of values
of θ, ϕ and u. To do this we first view (25) as a quadratic polynomial in �(a′). This polynomial will
be non-negative if we can prove that it does not have two distinct real roots. This is equivalent to the
condition:

D ≥ 0, (26)

where

D :=
|λ|2[�(a′)2 − 2r−1w�(a′)] + r−1sw2

rs− |λ|2

=
|λ|2

{
[�(a′)− r−1w]2 + r−2w2(rs− |λ|2)

}
rs− |λ|2 . (27)

As seen from this relation, in order to show that D ≥ 0 we just need to check that rs − |λ|2 is
non-negative. Employing (10), (16), and the elementary trigonometric identities

cos2 θ
2
=
1 + cos θ

2
, sin2 θ

2
=
1− cos θ

2
,
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we have

rs− |λ|2 = e2�(ϕ)[(a+ bu)(au+ b)− |uζ − ζ∗|2]
= e2�(ϕ)u

(
| cos θ

2
|2 + | sin θ

2
|2 + 2�[cos2 θ

2
sin2 θ

2

∗
]
)

= e2�(ϕ)u. (28)

Hence rs− |λ|2 > 0, and (26) and (25) are always satisfied.

In summary, the traceless quasi-Hermitian operators H ′
0 that together with H0 (respectively H) form a

compatible set involve, in addition to the complex parameters θ, ϕ of H0 and the real positive parameter u
of η+, three free real parameters. For Case 1, these can be taken as �(a′),�(b′) and �(a′). For Case 2, one
can choose �(a′),�(a′) and w (or alternatively �(b′)).
Next, we return to the discussion of the irreducibility of a set of compatible quasi-Hermitian operators.

As we mentioned above two operators H and H ′ form an irreducible set, if they lack a common eigenvector.
This is equivalent to the condition

det([H,H ′]) �= 0, (29)

where [·, ·] denotes the commutator. It is easy to see that (29) is equivalent to

det([H0, H
′
0]) �= 0, (30)

where H0 and H ′
0 are the traceless parts of H and H ′, respectively. Substituting (4) and (11) in (30), we

find

(bc′ − cb′)2 − 4(ab′ − ba′)(ac′ − ca′) �= 0. (31)

Let C
H
denote the moduli space of the quasi-Hermitian operator H ′ that are compatible with H . Every

point in C
H
is parameterized by the free parameters q′ ∈ R that equals tr(H ′)/2, u ∈ R+ that enters in

the expression for the allowed metric operators η+, and the three free real variables: �(a′),�(b′) and �(a′)
for Case 1 and �(a′),�(a′) and w (or alternatively �(b′)) for Case 2. The moduli space MH of the quasi-
Hermitian operators H ′ that are compatible with H and together with H constitute an irreducible set is
the subset of C

H
that exclude the values of the latter three variables for which the left-hand side of (31)

vanishes. C
H
−M

H
is a three dimensional subspace of C

H
. Hence a generic choice for H ′ ∈ C

H
will belong

to MH ; H and H ′ will form an irreducible set.
Finally, we consider fixing an element H ′ of MH − {H}, i.e., selecting particular values for q′, a′, b′, c′

that fulfil (13)–(15) and (31). We wish to explain why in this case the value of u is uniquely determined
and hence η+ is fixed up to the scaling factor k. Consider Case 1 above. If θ �= 0, then u = 1 necessarily. If
θ = 0, then we can solve for u in the second equation in (20). The latter is linear in u, hence its solution
is unique. Next, consider Case 2. Then we can similarly solve (22) for u. Again this equation is linear in u
and its solution is unique.

4. Concluding Remarks

In this paper we have provided an explicit characterization of the most general quasi-Hermitian operator
H , the associated metric operators η+, and η+-pseudo-Hermitian operators acting in C2. We have derived
a quantitative condition that singles out the operators H ′ that together with H form an irreducible set of
compatible quasi-Hermitian operators, and demonstrated how a choice of H and H ′ fixes the metric operator
up to a scale factor.
In pseudo-Hermitian quantum mechanics [12], a quantum system is constructed by choosing a Hamilto-

nian operator H (from among the set of quasi-Hermitian operators) and a metric operator η+ that renders
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the Hamiltonian η+-pseudo-Hermitian. The latter specifies the physical Hilbert space of the system. The
physical observables are represented by η+-pseudo-Hermitian operators H ′. In quasi-Hermitian quantum
mechanics [8], instead of choosing H and η+ one chooses H and another element of the space MH of all
quasi-Hermitian operators that together with H form an irreducible set of compatible operators.
As we demonstrated, by explicit calculations for a general two-level quantum system, employing quasi-

Hermitian quantum mechanics requires carrying out all the constructions of the pseudo-Hermitian quantum
mechanics. In this sense, the former is not more practical than the latter.
It is occasionally argued that quasi-Hermitian quantum mechanics is more physically relevant because

it involves fixing the Hilbert space after choosing a set of physical observables. We wish to emphasize that
the physical interpretation of an operator cannot be achieved before fixing the structure of the Hilbert space
it acts in. Therefore, as far as the physical aspects of both pseudo- and quasi-Hermitian formulations of
quantum mechanics are concerned, they are on equal grounds.
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