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Abstract

The Green’s functions for relativistic particles, with and without spin in interaction with an electro-

magnetic plane wave, are obtained via Parisi-Wu stochastic quantization method after having solved the

corresponding Langevin equation.
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1. Introduction

In this paper, we propose to determine the correlation products of two fields, using Green’s functions
involving a Klein-Gordon (KG) particle, and Dirac particle, both moving in a Volkov wave field, using the
Parisi-Wu stochastic quantization method (SQM) [1, 2].

The wave function, described by a 4-potential, Aµ ≡ Aµ(ϕ), is a function only of the product ϕ = kx,
where the wave vector k is such that k2 = 0, and satisfies the Lorentz gauge condition

∂µA
µ = 0, (1)

which is equivalent to

kA = 0. (2)

This interaction has been the subject of various studies via the algebraic approach [3] and the Feynman
path integral method [4, 5].

Briefly, the Parisi-Wu stochastic quantum method [1] is formulated as follows. First, one adds a fictitious
time u to the real time. The field φ(x) becomes φ(x, u) for which the evolution is given by the Langevin
equation

∂φ(x, u)
∂u

= i
δS

δφ(x, u)
+ η(x, u), (3)
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where

S (φ) =
∫
dx4L (φ, ∂µφ) =

∫
d4xL

(
φ, ∂0φ,

→
∇φ

)
(4)

is the classical action, which describes the motion of the system; and η is a white noise, where

〈η(x, u)〉 = 0,

〈η(x, u)η(x′, u′)〉 = 2δ4(x− x
′
)δ(u− u′). (5)

The stochastic average is expressed as a functional integral:

〈φ(x1, u)φ(x2, u)...〉 =
∫

Dφφ(x1)φ(x2)...P [φ, u] , (6)

where P is the probability distribution which satisfies the Fokker–Planck equation

∂

∂u
P [φ, u] =

∫
Dφ(x)

δ

δφ(x)

(
δ

δφ(x)
− i

δS

δφ(x)

)
P [φ, u] , (7)

and is normalized as

〈1〉 =
∫

DφP [φ, u] = 1. (8)

On this level, let us specify that each path in the path integral formalism is affected by the complex
weight exp(iS (φ)), and the propagator, or the averages, for example, are in general ill-defined. To remedy
it, we can carry out a Wick rotation, causing the weight to become real and have the value exp(−SE)

In our case, the space in which the particle moves is Minkowski space and its movement is governed by
the Langevin equation containing a complex drift term [6]. With the Wick rotation, we can also modify the

term i
δS

δφ(x)
into − δSE

δφ(x)
, wherein the Langevin and FP equations become real; and at thermal equilibrium

(u → ∞), the probability P → exp(−SE) is a stationary solution; and the average becomes the standard
average of the formalism path integral (with weight exp (−SE)), where

SE (φ) = −
∫
d4xL

(
φ, i∂0φ,

→
∇φ

)
(9)

is the euclidean action.
However, it was shown in [6] that one can use the complex Langevin equation in Minkowski space by

implicitly modifying in the action (or the Lagrangian) the mass by an imaginary term (m2 → m2 − i0), to
ensure the convergence of the stochastic process and the propagator; thus with which average expressions of
standard quantum mechanics are obtained at thermal equilibrium (u → ∞).

In addition let us note that we can, by separating the real and imaginary parts of the Langevin equation,
calculate physical quantities by using the notion of real and positive probability [7] and thus, at equilibrium
(u −→ ∞), the correlation function becomes exactly the same as that defined by the Feynman path integral
formalism:

lim
u−→∞

〈φ(x1, u)φ(x2, u)...〉 =

∫
Dφφ(x1)φ(x2) · · ·eiS

∫
DφeiS

(10)

= 〈0|T (φ(x1)φ(x2)) |0〉 . (11)

To determine the Green’s functions for Klein-Gordon and Dirac equations by the stochastic approach, it
is thus necessary to solve as a preliminary the Langevin equation.

Thus we consider the problem of the KG particle.
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2. Klein Gordon particle in Volkov’s wave field

For a spinless particle moving in Volkov’s wave field, the Green’s function provides a solution to the KG
equation

(π2
b −m2)∆(xb, xa) = δ4(xb − xa), (12)

where

πµ = i∂µ − eAµ .

In SQM, this Green’s function ∆(xb, xa) is the correlation function of the field φ and its conjugation φ∗

in thermal equilibrium:

∆(xb, xa) = lim
ua=ub→∞

< φ(xb, ub)φ∗(xa, ua) >, (13)

where u is fictitious time.
Therefore, it is necessary to know the field φ, which solves the Langevin equation. First, we give the

action for a charged KG field:

S =
∫
d4x

[
(∂µφ+ ieAµφ) (∂µφ∗ − ieAµφ∗) −m2φφ∗] . (14)

Next, we apply the SQM by introducing a new fictitious time u, i.e.

φ(x) −→ φ(x, u), φ∗(x) −→ φ∗(x, u), (15)

and write the Langevin equations which govern the evolution of the field φ and its conjugation φ∗:


∂φ (x, u)
∂u

= − δS

δφ∗(x, u)
+ η(x, u)

∂φ∗ (x, u)
∂u

= − δS

δφ(x, u)
+ η∗(x, u)

, (16)

where the noise fulfill

< η(x, u) >=< η∗(x, u) >= 0 (17)

< η(x, u)η∗(x
′
, u

′
) >= 2δ4(x− x

′
)δ(u − u

′
). (18)

Explicitly, these two equations are


∂φ(x, u)
∂u

=
[
∂µ∂µφ+ 2ieAµ (∂µφ) +

(
m2 − e2A2

)
φ

]
+ η(x, u)

∂φ∗ (x, u)
∂u

=
[
∂µ∂µφ

∗ − 2ieAµ (∂µφ
∗) +

(
m2 − e2A2

)
φ∗

]
+ η∗(x, u)

. (19)

It is obvious that it is sufficient to solve only one equation since these two equations are conjugations of
one another.

The general solution for the first equation is

φ(x, u) = φ0(x, u) +
∫ ∞

−∞
du′

∫
d4x′G(x− x′; u− u′)η(x′, u′),
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where φ0 = φ(x, u)u=0 = 0 is a particular solution and G(x− x′; u− u′) is the Green’s function solution of[
∂

∂u
− ∂µ∂µ − 2ieAµ∂µ −

(
m2 − e2A2

)]
G(x− x′; u− u′)

= δ(u − u′)δ4(x− x′). (20)

To obtain G, it suffices to: (a) find the solution of equation (20) without the δ functions of the second

member; and (b) add to this solution function θ(u), since
dθ(u)
du

= δ(u).
Thus, let us solve this equation. To this end, we carry out the replacement G→ Φ to reduce the notation:[

∂

∂u
− ∂µ∂µ − 2ieAµ∂µ −

(
m2 − e2A2

)]
Φ(x, u) = 0, (21)

where we define a new function Φ(x, u) → φ̃(p, ϕ, u) via Fourier transform:

Φ(x, u) = i

∫
d4p

(2π)4
exp (−ipx) φ̃(p, ϕ, u). (22)

Equation (21) then becomes

∂φ̃(p, ϕ, u)
∂u

=
[
−

(
p2 −m2

)
φ̃(p, ϕ, u) −

[
2e (Ap) +

(
e2A2

)]
φ̃(p, ϕ, u)

− 2i (pk)
∂φ̃(p, ϕ, u)

∂ϕ

]
, (23)

where we used the relations k2 = 0, kA = 0.
After some arrangements, we get the final expressions of G(x; u) and G∗(x; u):


G(x; u) = θ(u)
∫

d4p

(2π)4
exp

{
−

(
p2 −m2

)
u− i (px) − i

(pk)

∫ kx

dϕ′
[
e (Ap) −

(
e2A2

)
2

]}

G∗(x; u) = θ(u)
∫

d4p

(2π)4
exp

{
−

(
p2 −m2

)
u+ i (px) +

i

(pk)

∫ kx

dϕ′
[
e (Ap) −

(
e2A2

)
2

] } (24)

Consequently, the correlation function at the equilibrium limit (u2 = u1 → ∞) takes the form

∆(xb, xa) = lim
u2=u1→∞

< φ(xb, ub)φ∗(xa, ua) >

=
1

(2π)4

∫
d4p

p2 −m2
exp

[
−ip (xb − xa) −

i

pk

∫ kxb

kxa

[
e (Ap) −

(
e2A2

)
2

]
dϕ

]
. (25)

This is exactly the Green’s function related to the relativistic particle of spin 0 subjected to the action of
the field of an electromagnetic plane wave, identical to that obtained via path integral formalism [4], or that
recently obtained by the approach of stochastic mechanics [8].

3. Spinning particle in Volkov’s wave field

In this part, we study the same problem for a particle with spin, which differs only by the coupling term
σF . The Green’s function S(xb, xa) of this problem is the solution of the Dirac equation

(π̂b −m)S(xb, xa) = δ4(xb − xa), (26)
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or rather its square: (
π2

b −m2 +
e

2
(σFb)

)
S1(xb, xa) = δ4(xb − xa). (27)

The passage from S1 to S is obtained through the change of function

S(xb, xa) = (π̂b +m) S1(xb, xa), (28)

where we have used the usual notations:

π̂ = πµγ
µ, σ.F = σµνFµν ,

σµν =
i

2
[γµ, γν ] , Fµν = ∂µAν − ∂νAµ, µ, ν = 0, 3. (29)

To calculate this Green’s function by SQM, we consider two fields: ψ, and its conjugate ψ = ψ+γ0. Next
we calculate the correlation function following Parisi-Wu stochastic quantization method:

S1(xb, xa) = lim
ua=ub→∞

〈
ψ(xb, ub)ψ(xa, ua)

〉
. (30)

In contrast to the KG case, the fields ψ and its conjugates ψ are not scalars variables but Grassmann
variables, with their evolutions governed by the Langevin equations


∂ψ (x, u)

∂u
= i

δS

δψ(x, u)
+ η(x, u)

∂ψ (x, u)
∂u

= i
δS

δψ(x, u)
+ η(x, u)

, (31)

with η and η̄ two Grassmanian noises having the properties∫
dη(x, u) =

∫
dη(x, u) = 0,

∫
dηη(x, u) =

∫
dηη(x, u) = 1, (32)

η2(x, u) = η2(x, u) = 0, η(x, u)η(x, u) = −η(x, u)η(x, u), (33)

and { 〈η(x, u)〉 = 〈η(x, u)〉 =< η2(x, u) >=< η2(x, u) >= 0
〈η(x, u)η(x′, u′)〉 = 2δ4(x− x′)δ(u− u′)

. (34)

Following the same method for the previous ∆(xb, xa) calculation, where we have in addition, in the
action, the coupling spin-field term, the Green’s function S1(xb, xa) is easily obtained. The result of this
Green’s function can be written in standard notation:

S1(xb, xa) =
1

(2π)4

∫
d4p

p2 −m2
exp

{
−ip (xb − xa) −

i

pk

∫ kxb

kxa

[
e (pA) − e2A2

2
+
eσF

4

]
dϕ

}

=
1

(2π)4

∫
d4p

p2 −m2
exp

{
−ip (xb − xa) −

i

pk

∫ kxb

kxa

[
e (pA) − e2A2

2

]
dϕ

}

× exp
{

e

2pk
k̂

[
Â (kxb) − Â (kxa)

]}
.

The Green’s function S(xb, xa) is deduced from equation (28):

S(xb, xa) = (π̂b +m) S1(xb, xa)

=
∫

d4p

(2π)4

[
1 +

ek̂Âb

2pk

][
p̂+m

p2 −m2

] [
1 − ek̂Âa

2pk

]

× exp

{
−ip (xb − xa) − i

pk

∫ kxb

kxa

[
e (Ap) − e2A2

2

]
dϕ

}
, (35)
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where we used the relations

exp

[
ek̂Â

2pk

]
= 1 +

e

2pk
k̂Â, ÂB̂ + B̂Â = 2 (AB) . (36)

Result (35) is equivalent to that given through the path integral approach [4].

4. Conclusion

By solving the Langevin equations we could determine at thermal equilibrium, and in a direct way, the
Green’s function for a relativistic particles of spin 0 and 1/2 in interaction with an electromagnetic plane
wave field. Calculations are given in an analytical and exact way, thanks to the plane wave properties. The
result is compared with those existing calculations and in particular agrees with that obtained via the path
integral approach [4], [5].
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