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Interface and Surface Optical Phonons Spectra in

Wurtzite Nitride Quantum Well Wires: Size and

Dielectric Effects

Li ZHANG
State Key Laboratory for Mesoscopic Physics, and School of Physics,

Peking University, Beijing 100871, P.R. CHINA
e-mail: zhangli-gz@263.net

Received 28.11.2006

Abstract

By employing the method of electrostatic potential expansion, the interface optical (IO) and surface

optical (SO) phonon modes and the corresponding Fröhlich-like electron-phonon-interaction Hamiltonian

in a Q1D wurtzite cylindrical quantum well wire (QWW) embedded in nonpolar dielectric matrix are

derived and studied based on the dielectric continuum model and Loudon’s uniaxial crystal model.

Numerical calculations for a wurtzite GaN/AlN QWW are mainly focused on the size- and dielectric-

dependent IO and SO phonon spectra and electron-IO (SO)phonons coupling functions. Results reveal

that, in general, there are two branches of IO phonon modes and one branch of SO mode in the system.

The dispersions of the IO and SO modes are obvious only when the radii ratio β and the dielectric

constant of nonpolar matrix εd is small. The limiting frequencies of IO and SO modes for very large β

have been analyzed in depth from both physical and mathematical viewpoints. The reducing behaviors of

some modes have been clearly observed. Via the discussion of electrostatic potential spacial distributions

of the IO and SO modes, we find that the QWW structures and dielectric constants of nonpolar matrix

have little influence on the low-frequency IO mode, but they can greatly affect the potential distributions

of high-frequency IO mode and SO mode. Detailed comparison of the dispersion behaviors of the modes

and electron-phonon coupling properties in the Q1D wurtzite QWWs with those in wurtzite QWs and

cubic quantum dots has also been made. Furthermore, part of the theoretical results derived in the

present paper is consistent with the relatively experimental conclusion.
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1. Introduction

With the rapid progress in nanotechnology of crystal-growth, such as HVPE, MOCVD and MBE, not
only cubic Q1D heterostructure, but also wurtzite Q1D quantum-well-wire (QWW) structures have been
synthesized [1–5]. The Q1D structures of wurtzite nitride QWW, with wide band-gaps covering from ultravi-
olet to red, are ideal electronic confined systems for fundamental studies of their physical properties and for
the fabrication of high-temperature and high-frequency optoelectronic nanodevices [3–9]. The self-organized
wurtzite ZnO and GaN Q1D nanowires ultraviolet lasers have revealed a narrow emission linewidth and
relatively low threshold [3–5].

85



ZHANG

It is well known that, at room and higher temperatures, the scattering of electrons by optical phonons
play a dominant role for various electronic properties. The electron-phonon interactions and scattering also
govern a number of important properties of quantum heterostructures, including hot-electron relaxation
rates, interband transition rates, and room-temperature exciton lifetimes, etc. Hence investigations of polar
optical phonon modes and electron-phonon interaction in low-dimensional quantum systems have attracted
much interest in theory and experiment [10–27]. One important subject of these studies is the effect of
quantum size on the polar optical phonon spectra and electron-phonon coupling properties in these quantum
heterostructures [10–18]. The size-dependence of scattering and polaronic effect in GaAs/AlGaAs planar
single and multi-layer heterostructure systems have been intensively studied [10, 11, 12]. For example, Chen
and coworkers [10] investigated the dispersion of IO modes as a function of the well- and barrier-thickness
in semiconductor super-lattices (SLs). Lee et al. [11] and Shi et al. [12] investigated the contributions of
various phonon modes (such as IO, LO and half-space modes) to the electron-phonon scattering rates and
binding energy and effective mass of polaron in QW systems. Their results revealed that, for neither too
wide nor too narrow QWs, the IO modes play very important role in the electron-phonon scattering and
polaronic effects. In the case of quite wide or narrow well width, the contributions to the scattering rate
and polaronic binding energy will come mainly from the LO modes.

Furthermore, the size-dependence of phonon spectra in quantum dots (QDs) have also been widely
reported [13–18]. In experiments, Paula’s group [13] studied the phonon spectra of CdTe QDs as a function
of the QD size by means of resonant Raman scattering measurements. Their results show that, as the QD size
decreases, the SO modes scattering intensity increases, but the electron-phonon coupling decreases. Hwang
et al. [14] and Baranov et al. [15] investigated the effect of quantum size on the polar optical phonon modes
in CdSe QDs. The blue-shift and broadening of the SO phonon frequency were clearly observed as the QD
size was reduced. On the side of theoretical research, Comas and coauthors [16] deduced and analyzed the
SO phonon modes in spherical nanostructrued QDs and semiconductor quantum rods under the standard
dielectric continuum (DC) approach. Their discussions were mainly focused on the dispersion of SO modes
as functions of the QD size and dielectric constants εd of matrix. Vasilevskiy [17] discussed the dispersion
frequency of the dipolar vibrational modes versus the radius in a CdSe QD embedded in different nonpolar
matrix. Kanyinda-Malu and Cruz [18] investigated the oscillation spectra of IO and LO phonon modes as a
function of the radius in cylindrical QDs.

However, to the best of our knowledge, there is rare work investigating the size and dielectric dependence
of polar vibration spectra in Q1D QWW systems, especially for the new synthesized wurtzite QWWs [3–
9]. Furthermore, the calculations of electron-phonon scattering and polaronic effects in these Q1D QWW
revealed that the effect of quantum-size can greatly influence the scattering rate and binding energy of the
polarons in Q1D rectangular QWW [19] and cylindrical QWW [20, 21]. Moreover, due to reduction of
the dimensionality and anisotropy of Q1D wurtzite structures, the properties of optical phonon modes in
wurtzite QWWs should have more distinct phonon branches [22–27]. Hence it is important and necessary
to investigate the size- and dielectric-dependent phonon spectra in Q1D wurtzite QWWs.

In previous studies of polar optical-phonons in wurtzite planar heterostructures, the dielectric contin-
uum (DC) model and Loudon’s uniaxial crystal model have been widely adopted [22–28]. As pointed out
by Wendler [29], the validity of the DC model is given by two basic facts. First, the Fröhlich type of
electron-phonon interaction plays only an important role in the center of the Brillouin zone because only
long-wavelength optical phonons produce large polarization fields. And second, the results of microscopic
calculations of the optical phonons are in good agreement with those of the DC model. On the other hand,
the experimental results of angular dispersion of polar phonons and Raman scattering in wurtzite planar
heterostructures have been proven to be in good agreement with the calculations based on Loudon’s uniax-
ial crystal model [30]. Therefore, the DC model and Loudon’s uniaxial crystal model will be employed to
investigate the IO and SO phonon spectra in the Q1D cylindrical wurtzite QWW system (shown in Figure
1) in the present paper.
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Figure 1. Schematic view of the Q1D wurtzite GaN/AlN cylindrical QWW embedded in nonpolar matrix with

dielectric constant εd.

The main significance of this work embodies the following three points. First, via the method of electro-
static potential expansion, the orthogonality relation for the polarization eigenvector, the dispersion relation
equation, the free IO and SO phonon fields as well as the corresponding Fröhlich electron-phonon interaction
Hamiltonian in the Q1D wurtzite QWWs have been derived. Secondly, the IO (SO) phonon dispersion as
functions of the QWW size, the dielectric constant of the nonpolar surrounding matrix have been numeri-
cally calculated and analyzed; the phonon electrostatic potential distributions have also been displayed, and
a detailed comparison for these characteristics with those in wurtzite QW and cubic QD systems has been
made, and the mathematical and physical origins for these features have been analyzed deeply. Finally,
the present theoretical scheme and numerical results are important and useful for further experimental and
theoretical investigations of the IO (SO) phonon effects on the complicated Q1D wurtzite QWW structures.

The paper is so organized: the IO and SO phonon dispersion relations and the Fröhlich-like electron-
phonon interaction Hamiltonian are deduced in section 2; the numerical results for the dispersion relation,
the electron-phonon coupling functions in wurtzite GaN/AlN QWWs are presented and discussed in section
3; At last, we summarized the main results and discussed the significance of the theory described in the
current paper in section 4.

2. Theory

Let us consider a wurtzite GaN/AlN QWW model with the inner radius R1 and the outer radius R2

placed in nonpolar dielectric environment, as shown in Figure 1, we take the z axis along the direction of
the c axis of the wurtzite material and denote the radial directions as t and axial directions as z. In the case
of free oscillations (the charge density ρ0(r) = 0) in the media and via the Maxwell equations, we have the
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relation of the electric displacement vector D, and it is given by [24, 27]

∇ ·D = −∇2[ε(ω)Φ(r)]

= −ε0
{
εt(ω)

[
1
ρ

∂

∂ρ
(ρ
∂

∂ρ
) +

1
ρ2

∂2

∂ϕ2

]
+ εz(ω)

∂2

∂z2

}
Φ(r) = 0, (1)

where ε(ω) is the dielectric function tensor, and Φ(r) is the electrostatic potential of polar optical phonons.
In order to solve the equation conveniently, we introduce the function γi(ω) [27], i.e.,

γi(ω) = sign [εzi(ω)εti(ω)]
√
|εzi(ω)/εti(ω)|. (2)

Based on the discussion in references [22–28], we know that, when γi(ω) < 0 [i.e., εt(ω)εz(ω) < 0], the
phonon modes correspond to the oscillating waves. On the contrary, they correspond to decaying waves
when γi(ω) > 0 [i.e., εt(ω)εz(ω) > 0]. In terms of the properties of IO and SO phonon modes, we know γi(ω)
should be position values in all the media constituted the QWW systems. Thus the frequencies of IO and
SO phonon modes in the wurtzite GaN/AlN QWWs must fall into the two ranges [22, 26, 27]: ωt,T1 −ωz,T2

and ωt,L1 − ωz,L2. The subscripts 1 and 2 denote the GaN and AlN materials, respectively.
For the IO and SO phonons in a Q1D GaN/AlN wurtzite cylindrical QWW, the solutions of equation

(1), i.e., the electrostatic potential of the phonon modes, can be written as

Φ(r) =
∑
m,kz

3∑
i=1

eimϕeikzz [AiIm(γikzρ) +BiKm(γikzρ)] θ(ρ− Ri−1)θ(Ri − ρ). (3)

In equation (3), θ(x) is the step function, and Km(x) and Im(x) are the first and second kind modified
Bessel functions, respectively. Via the boundary conditions (BCs), namely, the continuity of the IO and SO
phonon potential functions and their normal components of electric displace at interface ρ = Ri (i = 1, 2),
it is easy to derive the equation

0 = −[Km−1(β32) +Km+1(β32)]{ξ1[Im−1(β11) + Im+1(β11)][Im(β22)Km(β21)

−Km(β22)Im(β21)] + ξ2Im(β11)[Km(β22)[Im−1(β21) + Im+1(β21)]

+Im(β22)[Km−1(β21) +Km+1(β21)]]}+ ξ2Km(β32){−[Im−1(β22) + Im+1(β22)]

×[ξ1[Im−1(β11) + Im+1(β11)]Km(β21) + ξ2[Km−1(β21) +Km+1(β21)]Im(β11)]

+[Km−1(β22) +Km+1(β22)][ξ2Im(β11)[Im−1(β21) + Im+1(β21)]

−ξ1Im(β21)[Im−1(β11) + Im+1(β11)]]}, (4)

where

ξi = γiεt,i (5)

βij = γikzRj, (i = 1, 2, 3; j = 1, 2).

Equation (4) just gives the dispersion relation of the IO and SO phonon modes in the Q1D cylindrical
wurtzite QWWs. Through the BCs, we also can define the functions gi(ω) (i = 1, 2) and hi(ω) (i = 2, 3):

g1(ω) = ξ2Km(β32){[Im−1(β21) + Im+1(β21)]Km(β21)

+[Km−1(β21) +Km+1(β21)]Im(β21)}, (6)

g2(ω) = Km(β32){ξ1[Im−1(β11) + Im+1(β11)]Km(β21)

+ξ2[Km−1(β21) +Km+1(β21)]Im(β11)}, (7)
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h2(ω) = ξ2Im(β11)[Im−1(β21) + Im+1(β21)]

−ξ1Im(β21)[Im−1(β11) + Im+1(β11)], (8)

h3(ω) = ξ1[Im−1(β11) + Im+1(β11)][Im(β22)Km(β21) − Im(β21)Km(β22)]

+ξ2Im(β11){[Im−1(β21) + Im+1(β21)]Km(β22)

+[Km−1(β21) +Km+1(β21)]Im(β22)}. (9)

By using the defined functions gi(ω) (i = 1, 2) and hi(ω) (i = 2, 3), the phonon potential function (3) can
be further rewritten as

Φ(r) = A1

∑
m,kz

3∑
i=1

eimϕeikzz [giIm(γikzρ) + hiKm(γikzρ)] θ(ρ −Ri−1)θ(Ri − ρ). (10)

Via Eq. (10), the polarization fields for the IO (SO) phonon modes of the system are given by

PIO,SO
mkz

=
A1

4π
eimϕeikzz

3∑
i=1

{1
2
(1− εt,i)γikz[gi(ω)[Im−1(γikzρ) + Im+1(γikzρ)]

−hi(ω)[Km−1(γikzρ) +Km+1(γikzρ)]]ρ̂+ (1− εt,i)
im
ρ
[gi(ω)Im(γikzρ)

+hi(ω)Km(γikzρ)]ϕ̂+ i(1− εz,i)kz[gi(ω)Im(γikzρ) + hi(ω)Km(γikzρ)]ẑ}, (11)

Then we can obtain the orthogonality relation for PIO,SO
mkz

, and it is given as∫
PIO,SO∗

m′k′
z

· PIO,SO
mkz

d3r

=
A2

1k
2
zL

16π

{∫ R1

0

ρdρ[2(1− εz,1)2g21I
2
m(γ1kzρ) + γ2

1(1− εt,1)2g21[I
2
m−1(γ1kzρ) + I2m+1(γ1kzρ)]]

+
∫ R2

R1

ρdρ{(1 − εz,2)2[2g22I
2
m(γ2kzρ) + 2h2

2K
2
m(γ2kzρ) + 4g2h2Im(γ2kzρ)Km(γ2kzρ)]

+γ2
2 (1− εt,2)2[g22(I

2
m−1(γ2kzρ) + I2m+1(γ2kzρ)) + h2

2(K
2
m−1(γ2kzρ) +K2

m+1(γ2kzρ))

+2g2h2(Im+1(γ2kzρ)Km+1(γ2kzρ)− Im−1(γ2kzρ)Km−1(γ2kzρ))]}} δm′mδk′
zkz , (12)

where L is the length of the QWW. The Hamiltonian for the IO and SO phonon modes in wurtzite QWW
is read as [27]

HIO,SO =
n∗µ

2

∫ [(
1

n∗et[1 + (αtµ/e
2
t )(ω2

0t − ω2)]

)2 ( .

P∗
t ·

.

Pt +ω2P∗
t ·Pt

)
+

(
1

n∗ez [1 + (αtµ/e2z)(ω2
0z − ω2)]

)2 ( .

P ∗
z ·

.

P z +ω2P ∗
z ·Pz

)]
d3r, (13)

where µ is the reduced mass of the ion pair and n∗ is the number of ion pairs per unit volume, ω0t and ω0z

are the frequencies associated with the short-range force between ions, et and ez are the effective charges of
the ions, αt and αz are the electronic polarizabilities per ion pair along the t and z directions, respectively.
Based on the orthogonality relation of the polarization vector (12) and choosing

|A1|−2 =
k2

zL

2ω2
{
∫ R1

0

ρdρ[2εz,1g
2
1I

2
m(γ1kzρ) + γ2

1 εt,1g
2
1[I

2
m−1(γ1kzρ) + I2m+1(γ1kzρ)]]

+
∫ R2

R1

ρdρ{εz,2[2g22I
2
m(γ2kzρ) + 2h2

2K
2
m(γ2kzρ) + 4g2h2Im(γ2kzρ)Km(γ2kzρ)]

+γ2
2 εt,2[g

2
2(I

2
m−1(γ2kzρ) + I2m+1(γ2kzρ)) + h2

2(K
2
m−1(γ2kzρ) +K2

m+1(γ2kzρ))

+2g2h2(Im+1(γ2kzρ)Km+1(γ2kzρ) − Im−1(γ2kzρ)Km−1(γ2kzρ))]}}, (14)
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PIO,SO
mkz

can be treated as an orthogonal and complete set, which can be used to express the free IO and SO
phonon field HIO,SO and the electron-phonon interaction Hamiltonian He−IO,SO. In Eq. (14), εu,i is the
effective dielectric function of the ith-layer material, which is defined as

εu,i =
(

1
εu,i − εu,i0

− 1
εu,i − εu,i∞

)−1

, u = t, z; i = 1, 2. (15)

The free IO and SO phonon field is given by

HIO,SO =
∑
m,kz

�ω

[
b†m(kz)bm(kz) +

1
2

]
, (16)

where b†m(kz) and bm(kz) are creation and annihilation boson operators for IO and SO phonons of the (m,
kz)-th mode. The Fröhlich-like Hamiltonian describing the interaction between an electron and the IO (SO)
phonons is given by

He−IO,SO = −
∑
m,kz

ΓIO,SO
m,kzR1

(ρ)[bm(kz)eimϕeikzz +H.c.], (17)

where ΓIO,SO
m,kzR1

(ρ) is the electron-phonon coupling function, which describes the coupling strength of a single
electron at the position ρ with the (m, kz)-th IO (SO) mode, and is defined as

ΓIO,SO
m,kzR1

(ρ) = Nm ×


g1(ω)Im(γ1kzρ) ρ � R1

g2(ω)Im(γ2kzρ) + h2(ω)Km(γ2kzρ) R1 < ρ � R2

h3(ω)Km(γ3kzρ) ρ > R2

(18)

with

|Nm| =
√

�e2

ω
|A1| . (19)

3. Numerical Results and Discussion

In this section, we have presented the numerical results of polar oscillation spectra and the distributions
of the electrostatic potentials of the IO (SO) phonon modes in a Q1D GaN/AlN wurtzite QWW with
the inner radius of R1 = 5 nm. In the discussion, we laid emphasis on the influence of QWW structure
(β = R2/R1) and dielectric matrix (εd) on the dispersion frequencies and electron-phonon coupling functions.
The material parameters used in our calculations originated from reference [22]

Figure 2 shows the dispersion frequencies �ω of the IO and SO phonon modes as a function of the ratio of
inner and outer radii β in the wurtzite QWW system with different azimuthal number m and wave-number
in z- direction kz. The dielectric constant of nonpolar matrix εd is kept at 1. From the figure, it can be seen
that, for a definite QWW structure β, and given azimuthal quantum m and wave-number kz, there are three
branches of IO and SO phonon modes in general. This means that equation (4) usually has three solutions
for ω. These modes are labeled by 1, 2 and 3 in terms of the order of increasing frequency. Modes 1 and 3
are monotonic and degressive functions of β, while mode 2 is the monotonic and incremental function of β.
It is also noticed that the frequency of the low-frequency mode 1 vary between ωtT1 and ωzT2, and those of
the high-frequency modes 2 and 3 fall into the range of ωtL1 to ωzL2, which is completely consistent with
the case in wurtzite QW systems [22]. When β is small, the dispersions are more obvious. The dispersions
of these modes nearly could be neglected when β > 5. An obviously different feature from the situation of
structural- dependent IO phonon spectra in cubic QD [16, 18] is that, some modes, such as modes 2 and
3 with m = 0 and kz = 1/R1 (Figure 2(a)) in the Q1D wurtzite QWW, can only appear when β � 1.23
and β � 2.1, respectively. But in the cubic crystal QDs, all of the IO modes always exist, even for very
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little radius and aspect ratio [16, 18]. This characteristic is completely due to the anisotropy of wurtzite
crystals. Detailed calculations show that the modes 2 and 3 in Figure 2(a) occur at the frequencies 91.832
meV and 110.09 meV, which are very close to the two characteristic frequencies ωz,L2 and ωt,L1, respectively.
Once ω > ωz,L2 or ω < ωt,L1 , γi(ω) will change to be a negative number and the IO (SO) phonon modes
will reduce to the other oscillating phonon modes, such as confined modes, quasi-confined modes [22] or
propagating modes [23]. Another special feature for mode 1 with m = 0 and kz = 1/R1 (Figure 2(a)) is
that, IO mode 1 will disappear when β is over 1.5. We can see from Figure 2(a), when β → 1.5, the frequency
of mode 1 approach 69.26 meV, which is very close to the characteristic frequency ωt,T1. Hence the reduced
behavior of mode 1 from IO mode to other oscillating mode will occur once β > 1.5.
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Figure 2. The dispersion frequencies ~ω of the IO and SO phonon modes as a functions of the radius ratio β in the

wurtzite QWW system with dielectric constant εd = 1.

In order to label and compare these branches of IO and SO modes, we computed and analyzed the
limiting frequencies of these modes for β → ∞. In fact, these limiting frequency values are just the solutions
of the dispersion equation of IO phonon modes in wurtzite single cylindrical heterostructure [27], i.e.,

εt,1γ1Km(γ2kzR)[Im−1(γ1kzR) + Im+1(γ1kzR)]

= −εt,2γ2Im(γ1kzR)[Km−1(γ2kzR) +Km+1(γ2kzR)]. (20)

This interesting characteristic is not accidental, but has profound physical origins. It is well known that,
in coupling low-dimensional quantum systems, the electrostatic potential coupling of IO modes on the
interfaces is very strong when the distances between the interfaces is not large enough. With the increase
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of interface distances, this coupling will become weaker and weaker. As the distance approaches infinity,
the electrostatic potentials of IO modes will be completely decoupled. Thus the limiting frequencies of the
IO and SO modes in GaN/AlN QWW embedded in nonpolar matrix for very large β will be determined
only by the single wurtzite cylindrical heterostructures [27], i.e., GaN/AlN and AlN/Matrix(εd). Therefore,
dispersion equation (20) just gives the limiting frequency values of IO and SO modes for large β in our Q1D
wurtzite QWWs. Via detailed calculation, it is found there are two branches of IO modes at the interface
ρ = R1, and only one branch of SO mode is localized at the surface ρ = R2. As can be seen more clearly in
Figures 3 and 4, mode 1 is the IO mode at the interface ρ = R1, but the case for modes 2 and 3 has little
difference. When kz is little (such as kzR1 � 1 in Figures 3), mode 3 can be looked on as the the IO mode
at ρ = R1, and mode 2 can be treated as the the SO mode at ρ = R2. But when kz is relatively large (such
as kzR1 � 3 in Figure 4), the situation is just opposite, i.e., mode 2 acts as the the IO mode at ρ = R1, and
mode 3 become the the SO mode at ρ = R2. Even so, there always exists two branches of IO modes, and
only one branch of SO mode in the QWW systems regarding of large and little wave-number kz in general.
Comparing Figures 2(a)–2(c), we find that, with the increase of m, the limited frequency values of modes
2 and 3 have obvious decrease, whereas that of mode 1 has obvious increase. Comparing Figure 2(b) with
Figure 2(d), it is also observed that, as kz increases, the limited values of modes 1 and 2 have little increase,
whereas that of mode 3 has little increase. This observation is consistent qualitatively with the results in
reference [27].
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Figure 3. The electron-phonon coupling function ΓIO,SO
m,kzR1

(ρ) as a function of ρ in the wurtzite QWWs embedded

in three dielectric constants of matrix, εd = 1.5 (solid line), 3 (dash line) and 5.5 (dot line), respectively.

In Figure 5, we present the frequencies �ω of IO and SO phonons as a function of dielectric constant of
the nonpolar matrix εd for the wurtzite QWW with a definite structure β = 2. Of course, the azimuthal
quantum number m and wave-number kz are kept at define values 1 and 1/R1, respectively. We observe
that mode 3 has little dispersion, i.e., the frequency of mode 3 decreases from 108.701 meV to 106.497 meV
as εd increases from 1 to 10. Furthermore, the dispersion of mode 1 nearly could be ignored. The frequency
dispersion for mode 2 is most obvious among the three branches of modes. In fact, in the case of m = 1 and
kzR1 = 1 (refer to the discussion for Figure 2), the modes 1 and 3 act as the IO modes whose potentials
are mainly localized at the interface, while mode 2 is the SO mode whose potential localized mainly at the
surface, which can be seen quite clearly in Figure 3. Hence it is natural that the influence of the dielectric
constant εd on the SO mode is stronger than that on the IO modes. On the other hand, the curve of mode
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2 is cut off at about εd = 5.8. This is also an interesting feature due to anisotropic wurtzite heterostructure,
and it was not observed in isotropic semiconductor heterostructure [16], even for εd → 10. This behavior of
the SO mode 2 can be understood qualitatively from the case of planar AlN/Matrix(εd) heterostructure [22].
Similar to the case of single wurtzite planar heterostructure, the IO phonon frequency in planar AlN/Matrix
heterostructure can be solved by the equation

√
|εt,2(ω)εz,2(ω)| = εd. The function

√
|εt,2(ω)εz,2(ω)| is a

monotonic and degressive function of ω in the frequency range ωtL1−ωzL2. Thus the frequency of SO mode
decrease with the increase of dielectric constant εd. When εd → 5.8, the SO mode frequency approaches
the characteristics frequency ωtL1. It is known from the above discussion, once ω < ωtL1, the function
γ2(ω) becomes negative, and thus the SO mode cannot exist in the situation and must reduce to the other
oscillating modes, such as quasi-confined modes or half-space modes [22–26].
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Next, we further investigate the electron-phonon coupling function ΓIO,SO
m,kzR1

(ρ) whose features may be
helpful for understanding the electron-phonon coupling strength and the electrostatic potential distribution
of the IO (SO) phonon modes in the wurtzite QWWs. Figure 3 depicts the coupling function ΓIO,SO

m,kzR1
(ρ) as

a function of ρ when m = kzR1 = 1 and β = 2. The solid, dash and dot lines correspond to three different
dielectric constants of matrix, εd = 1.5, 3 and 5.5, respectively. Via the figure, it is seen that modes 1 and 3
are mainly localized at the first interface ρ = R1, and mode 1 mainly at the surface ρ = R2. So the modes
1 and 3 can be looked on as the IO modes at the first interface, while the mode 2 can be treated as the SO
modes at the surface, which are completely consistent with the analysis for Figure 5. As εd increases, the
electrostatic potential distribution of IO mode 1 is basically kept unchanged, which could be understood
directly from the nondispersive property of the mode on εd (refer to Figure 5). But the dielectric constant
has great influence on the potentials of modes 2 and 3. The maximum values of ΓIO,SO

m,kzR1
(ρ) of the IO mode

3 remarkably increase, whereas those of the SO mode 2 notably decrease with the increasing εd. We also
notice that the high frequency branch relative to the low frequency one plays more important role in the
electron-phonons interactions, which differs obviously from the case in wurtzite QWs due to their different
confined dimensions [22].

In Figure 4, we also show the spacial distributions of the coupling function ΓIO,SO
m,kzR1

(ρ). The solid, dash
and dot lines correspond to three different wurtzite QWW structures with β = 1.5, 2 and 2.5, respectively.
The azimuthal quantum number m, wave-number kzR1 and dielectric constant εd are fixed at 1, 3 and 1,
respectively. Similar to the case in Figure 3, mode 1 is mainly localized at the interface, and its potential is
not affected nearly by the change in QWW structures. Comparing with Figure 3, we find that modes 2 and
3 exchange their localizing positions with each other in Figure 4, namely, mode 2 is the IO mode, and mode
3 act as the SO mode. This just proves the above analysis in Figure 2 regarding the exchange behavior
of modes 2 and 3 due to the different free wave-numbers kz. Furthermore, it is also observed the strength
of electron-phonon coupling for modes 2 and 3 have obvious enhancement as β increases. This result is
consistent with the Paula’s experimental conclusion in CdTe QD [13], i.e. decrease in the electron-phonon
coupling as the nanocrystal size is decreased.

4. Summary and Conclusions

Within the framework of the DC model and Loudon’s uniaxial crystal model [28], the IO and SO phonon
modes, the orthogonality relation for polarization eigenvector, the dispersion relation, and Fröhlich electron-
phonon interaction Hamiltonian in a Q1D wurtzite cylindrical QWW systems have been deduced and studied
in the present paper. Numerical calculations on a GaN/AlN QWWhave been performed, and the calculations
are mainly focused on the size- and dielectric-dependent IO and SO phonon spectra and the electron-phonon
coupling functions. Results reveal that, in general, there exists two branches of IO modes and one branch
of SO mode in the Q1D wurtzite QWW. The dispersions of IO and SO phonon modes is more obvious
when β and εd is small, and the dispersions of some modes almost could be neglected for relatively large
β and εd. Furthermore, the limiting frequencies of IO and SO modes for very large β have been analyzed
in depth from both of physical and mathematical viewpoints. The reducing behaviors of some IO and SO
modes have been clearly observed. Via the discussion of the electron-phonon coupling functions, it is found
that the wurtzite QWW structures and dielectric constants of nonpolar matrix have little influence on the
low-frequency IO mode, but they can greatly affect the potential distributions of high-frequency IO mode
and SO mode. With the increase of dielectric constant of matrix εd, the electron-phonon coupling strength of
high-frequency IO mode is enhanced apparently; but that of SO mode is decreased obviously. As β increases,
both the coupling strengths of SO mode and high-frequency IO mode have enhancements, and this feature
is completely consistent with the relatively experimental results [13].

The theoretical results obtained in present paper are important and useful for further experimental
and theoretical investigation of the size- and dielectric-dependent phonon spectra and electron-phonon in-
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teractions, as well as for device applications in Q1D wurtzite QWW systems. We hope that the present
work will stimulate further investigations of the lattice dynamical properties, and guide and explain relative
experimental phenomenons in the Q1D wurtzite semiconductor heterostructure systems.

Acknowledgments

We would like to acknowledge the detailed and valuable instructs of Prof. J. J. Shi. This work was
supported by the Science and Technology Project of Advanced Academy of Guangzhou City under Grant
No. 2060, Peoples Republic of China.

References

[1] K. Suenaga, C. Colliex, N. Demoncy, A. Loiseau, H. Pascard, and F. Willaime, Science, 278, (1997), 653; Y.

Zhang, K. Suenaga, C. Colliex, and S. Iijima, Science, 281, (1998), 973.

[2] L. J. Lauhon, M. S. Gudlksen, D. Wang, and C. M. Lieber, Nature, 420, (2002), 57.

[3] H-J. Choi, J. C. Johnson, R. He, S-K. Lee, F. Kim, P. Pauzauskie, J. Goldberger, R.J. Saykally, and P. Yang,

J. Phys. Chem., B107, (2003), 8271.

[4] J. Goldberger, R. He, Y. Zhang, S. Lee, H. Yan, H-J. Choi, and P. Yang, Nature, 422, (2003), 599.

[5] M. H. Huang, S. Mao, H. Fieck, H. Yan, Y. Wu, H. Kind, E. Weber, R. Richard, and P. Yang, Science, 292,

(2001), 5523.

[6] W. Huang, and F. Jain, J. Appl. Phys., 87, (2000), 7354.

[7] Y. Kawakami, N. Higashimaki, K. Doi, K. Nakamura, and A. Tachibana, Phys. Status Solidi (c), 0, (2003),

2318.

[8] J-R. Kim, B-K. Kim, I.J. Lee, and J-J. Kim, Phys. Rev., B69, (2004), 233303.

[9] H-L. Liu, C. C. Chen, C-T. Chia, C. C. Yeh, C-H. Chen, M-Y. Yu, S. Keller, and S.P. DenBaars, Chem. Phys.

Lett., 345, (2001), 245.

[10] K. Q. Chen, W. H. Duan, W. X. Li, J. Wu, H. Y. Wang, and B. L. Gu, Microelectronic Engineering, 66, (2003),

26; K.Q. Chen, W. H. Duan, B. L. Gu, and B. Y. Gu, Phys. Lett. A, 299, (2002), 634; K. Q. Chen, W. H.

Duan, J. Wu, B. L. Gu, and B. Y. Gu, J. Phys.: Condens. Matter, 14, (2002), 13761.

[11] H. C. Lee, K. W. Sun, and C. P. Lee, J. Appl. Phys., 92, (2002), 268.

[12] J. J. Shi, and S. H. Pan, Phys. Rev., B51, (1995), 17681; J. J. Shi, X. Q. Zhu, Z. X. Liu, S. H. Pan, and X. Y.

Li, Phys. Rev., B55, (1997), 4680.

[13] A. M. de Paula, L. C. Barbosa, C. H. B. Cruz, O. L. Alves, J. A. Sanjurjo, and C. L. Cesar, Appl. Phys. Lett.,

69, (1996), 357; Supperlattices and Microstructures, 23, (1998), 1103.

[14] Y-N. Hwang, and S-H. Park, Phys. Rev., B59, (1999), 7258.

[15] A. V. Baranov, Y. P. Rakovich, J. F. Donegan, T. S. Perova, R. A. Moore, D. V. Talapin, A. L. Rogach, Y.

Masumoto, and I. Nabiev, Phys. Rev., B68, (2003), 165306.

[16] F. Comas, N. Studart, and G. E. Marques, Solid State Commun., 130, (2004), 477; F. Comas, and A. Odriazola,

Phys. Stat. Sol. (b), 242, (2005), 1267.

[17] M. I. Vasilevskiy, Phys. Rev., B66, (2002), 195326.

95



ZHANG

[18] C. Kanyinda-Malu, and R. M. de la Cruz, Phys. Rev., B59, (1999), 1621.

[19] K. W. Kim, M. A. Stroscio, A. Bhatt, R. Mickevicius, and V.V. Mitin, J. Appl. Phys., 70, (1991), 319.

[20] H. J. Xie, C. Y. Chen, and B. K. Ma, Phys. Rev., B61, (2000), 4827; J. Phys.: Condens. Matter, 12, (2000),

8623.

[21] L. Zhang, H. J. Xie, and C. Y. Chen, Chin. J. Phys., 41, (2003), 148.

[22] J. J. Shi, Phys. Rev., B68, (2003), 165335.

[23] J. J. Shi, X. L. Chu, and E. M. Goldys, Phys. Rev., B70, (2004), 115318.

[24] B. C. Lee, K. W. Kim, M. Dutta, and M. A. Stroscio, Phys. Rev., B56, (1997), 997; Phys. Rev., B58, (1998),

4860.

[25] J. Gleize, M. A. Renucci, J. Frandon, and F. Demangeot, Phys. Rev., B60, (1999), 15985.

[26] S.M. Komirenko, K.W. Kim, M.A. Stroscio, and M. Dutta, Phys. Rev., B59, (1999), 5013.

[27] L. Zhang, J. J. Shi, and T. L. Tansley, Phys. Rev., B71, (2005), 245324.

[28] R. Loudon, Adv. Phys., 13, (1964), 423.

[29] L. Wendler, R. Haupt, and V.G. Grigoryan, Physica, B167, (1990), 91.

[30] J. Gleize, F. Demangeot, J. Frandon, M. A. Renucci, M. Kuball, B. Daudin, and N. Grandjean, Phys. Status

Solidi (a), 183, (2001), 157; J. Gleize, J. Frandon, F. Demangeot, M. A. Renucci, M. Kuball, J. M. Hayes, F.

Widmann, and B. Daudin, Mater. Sci. Eng (b), 82, (2001), 27.

96


