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Abstract

An exact solution of unsteady flow of a viscous fluid due to a sudden pull with constant velocities of

non-coaxial rotations between two porous infinite disks in the presence of uniform transpose magnetic

field is investigated. Two different methods are used to obtain the solution at large times and the

solution at small times. The effects of magnetic field suction and injection on the velocity distributions

are presented.
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1. Introduction

Most of the fundamental concepts of unsteady viscous flows have been known since the early part of
the century. However, the past decade has seen an unprecedented number of publications in this area.
Interest is concentrated here on the behavior of viscous fluids and, in particular, their response to time
dependent external conditions. The solid boundaries of such flows as well as the conditions of the oncoming
flow are time-independent, and yet, unsteadiness sets in by itself. Such phenomena have been predicted
with some success by analytic methods. A straightforward approach to the problem has been possible via
the solution of Navier-Stokes equations [1]. Typical problems are the instability and transition of boundary
layers, free shear layers and jets, the shedding of vortices, the development of unsteady wakes, a boundary
layer and, of course, all problems involving turbulence. In most of the problems, the body forces in the
Navier-Stokes equations are neglected for simplicity and convenience. It is observed theoretically [2, 3, 4]
and experimentally [5] that, when magnetohydrodynamics (MHD) forces acts as the body forces in the flow
field phenomena, it controls the boundary layers. Also, MHD is the theory of the macroscopic interaction
of electrically conducting fluids with a magnetic field and it acts perpendicular to the velocity field. It has
significant applications in many engineering problems, geophysics and astronomy.

In the present work, we assume the same geometry as that of Ersoy’s [6] paper, in which he discussed the
flow due to a pull arising from eccentric rotating disks with constant angular velocity. We have generalized
the results when the disks are porous and an external uniform magnetic field acts perpendicular to them.
The magnetic Reynold number is small so that the induced magnetic field is neglected [2, 3]. Solutions for
large time and small time is obtained by the method of eigenfunction and Laplace transform, respectively.
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Although the large time solution can be obtained from the small time solution, it converges effectively via
the method we have used for large time [6].

The paper is organized as follows. In section 2, formulation of the problem and basic equations are
derived. Section 3 deals with large time solution of the problem. Section 4 is devoted to the small time
solution. In section 5, the case of blowing is discussed and finally concluding remarks are given in section 6.

2. Formulation of the Problem

The flow field of the problem is bounded by two infinite disks located at z = h and z = −h. The top disk
and the bottom disk rotate about the z′-axis and z′′-axis with the same angular velocity Ω, respectively.
The two non-coincident axes are separated by a distance 2l. The disks initially rotate eccentrically and are
assumed to be infinite. The upper and the lower disks are suddenly pulled along their common axis with
constant velocities U and −U, respectively. The velocity U has two components: U1 in the x-direction and
U2 in the y-direction. Therefore, the appropriate initial and boundary conditions are given by

u = −Ωy + f (z) , v = Ωx+ g (z) , w = −w0 at t = 0 for − h ≤ z ≤ h,

u = −Ω (y − l) + U1, v = Ωx+ U2, w = −w0 at z = h for t > 0,

u = −Ω (y + l) − U1, v = Ωx− U2, w = −w0 at z = −h for t > 0, (1)

where f (z) and g (z) are the known functions and they represent the flow between eccentric rotating disks
for a Newtonian fluid. Abbott and Walters [7] found that

f (z) + ig (z) = Ωl
sinh kz
sinh kh

,

where k =
√

Ω
2ν (1 + i) and ν is the kinematic viscosity.

The components of the velocity field are

u = −Ωy + f(z, t), v = Ωx+ g(z, t), w = −w0, (2)

where w0 > 0 is the suction velocity and w < 0 is the injection velocity.

The appropriate generalization for arbitrary, time-dependent flows is [8, 9]

T = −pδ + τ

= −pδ + µ
[∇V + (∇V)�

]
+
(

2
3
µ − κ

)
(∇ · V)δ,

where (∇V)� is the transpose of the dyadic (∇V) and δ is the unit tensor. This expression reduces
to the hydrostatic pressure when there are no velocity gradients; it contains all possible combinations of
first derivatives of velocity components that are allowed if one assumes that the fluid is isotropic and the
momentum flux tensor is symmetric [10, 11]. The symbol p represents the thermodynamic pressure, which is
related to the density ρ and the temperature T through a “thermodynamic equation of state,” p = p(ρ, T );
that is, this is taken to be the same function that one uses in thermal equilibrium. The stress τ is the part
of the momentum flux tensor or stress tensor that is associated with the viscosity of the fluid. An equation
that assigns a value to τ is called a constitutive equation for the Newtonian fluid. Note that in generalizing
Newton’s law of viscosity to arbitrary flows an additional transport property κ, the dilatational viscosity,
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arises. The dilatational viscosity is identically zero for ideal, monotonic gases; for incompressible liquids
∇ · V = 0, and the term containing κ vanishes.

For all fluids the density ρdepends on the local thermodynamic state variables, such as pressure and
temperature. However, for fluids it is often a very good assumption to take the density to be constant. Such
an idealized fluid is often called an incompressible fluid, and the momentum flux tensor simplifies to [8]

T = −pδ + τ = −pδ + µ γ̇,

in which γ̇ = ∇V+(∇V)� is the rate of strain tensor or rate of deformation tensor. Thus the Navier-Stokes
equation become

ρ
dV
dt

= −pδ + µγ̇ + J ×B, (3)

where d/dt is the usual material time derivative and J×B are MHD body forces arising from the Maxwell’s
equations:

∇ ·B = 0, ∇× B = µmJ, ∇ · E = 0

in which J is the electric current density, B is the total magnetic field so that B = B0+b; and b is the
induced magnetic field. The magnetic Reynolds number Rm is assumed to be small as is the case with
most of conducting fluids, and hence the induced magnetic field is small in comparison with the applied
magnetic field and therefore not taken into account [2, 3, 9, 12]. The magnetic body force J × B now
becomes σ(V ×B) ×B (σ is the electrical conductivity of the fluid), that is

σ(V ×B) ×B = −σB2
0V.

Substituting (2) in (3)and eliminating the pressure, we obtain

ν
∂2f

∂z2
− ∂f

∂t
+ w0

∂f

∂z
+ Ωg − σB2

0

ρ
f = C1 (t) , (4)

ν
∂2g

∂z2
− ∂g

∂t
+w0

∂g

∂z
− Ωf − σB2

0

ρ
g = C2 (t) , (5)

where C1(t) and C2(t) are arbitrary functions of time t. The corresponding boundary conditions (1) become

f(z, 0) = f (z) , g(z, 0) = f (z) , for − h ≤ z ≤ h,

f(h, t) = Ωl+ U1, g(h, t) = U2, for t > 0

f(−h, t) = −Ωl − U1, g(−h, t) = −U2, for t > 0. (6)

To obtain a symmetry velocity distribution we have the following condition:

f(0, t) = 0, g(0, t) = 0, for t ≥ 0 (7)

Applying (7) in (4) and (5) and then coupling, we get

ν
∂2F

∂z2
− ∂F

∂t
+ w0

∂F

∂z
− (iΩ + φ)F = 0, (8)

and the conditions (6) and (7) takes the form

F (z, 0) = Ωl
sinh kz
sinh kh

,

F (0, t) = 0, F (±h, t) = ± [(Ωl+ U1) + U2] , (9)

where

F (z, t) =
f (z, t)

Ωl
+ i

g (z, t)
Ωl

.
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3. Solution at Large Times

At long times, we anticipate that the flow will reach a steady state with a velocity profile given by

Fss (z, t) = [(Ωl + U1) + U2] e
w0
2ν (h−z) sinh ξz

sinh ξh
.

In order to obtain the solution of (8) we take the form

F (z, t) = [(Ωl+ U1) + U2] e
w0
2ν (h−z) sinh ξz

sinh ξh
−G (z, t) , (10)

where the first term on the right hand side is the steady-state solution and the second one is the deviation
from it. Inserting (10) into (8) and (9), we obtain the system

ν
∂2G

∂z2
− ∂G

∂t
+w0

∂G

∂z
− (iΩ + φ)G = 0, (11)

G (z, 0) = [(Ωl+ U1) + U2] e
w0
2ν (h−z) sinh ξz

sinh ξh
− Ωl

sinh kz
sinh kh

,

G(0, t) = 0, G(±h, t) = 0, (12)

where

ξ =

√
w2

0 + 4ν (iΩ + φ)
2ν

.

To obtain the solution of (11) we introduce the transformation

G (z, t) = e[z+
w0
2 t]w0

2ν w1 (z, t) (13)

so that the equations (11) and (12) takes the form

ν
∂2w1

∂z2
− ∂w1

∂t
− (iΩ + φ)w1 = 0, (14)

w1 (z, 0) = [(Ωl+ U1) + U2] e
w0
2ν (h−z) sinh ξz

sinh ξh
− Ωl

sinh kz
sinh kh

,

w1(0, t) = 0, w1(±h, t) = 0. (15)

Equation (14) is solved by the method of separation of variables and its solution is given by

w1 (z, t) =
∞∑
n=1

Cn sin
nπ

h
z · e−λnt, (16)

where λn = ν
(
nπ
h

)2 + (φ+ iΩ). The coefficient Cn is determined from the initial condition and given as

Cn = −2π [(Ωl+ U1) + U2] e
w0
2ν h

n (−1)n

h2ξ2 + n2π2

+i
4πΩ ln (−1)n

sinh kh

[
sinh (k + c)h

h2 (k + c)2 + n2π2
+

sinh (k − c)h
h2 (k − c)2 + n2π2

]
. (17)
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Finally, substituting (16) in (13), and then the resulting equation in (10), we obtain

F (z, t) = [(Ωl+ U1) + U2] e
w0
2ν (h−z) sinh ξz

sinh ξh

−e−w0
2ν z−

w2
0

4ν t
∞∑
n=1

Cn sin
nπ

h
z · e−λnt. (18)

and

f

Ωl
=
e

w0R
2 (1−η)

∆

[
(1 + V1) {P (1)P (η) +Q (1)Q (η)}
−V2 {P (1)Q (η) −Q (1)P (η)}

]

+2πe−
w0R

2 (1+η+ 1
2w0τ)−φτ

×
∞∑
n=1

[ {(1 + V1) c+ V2d} cos τ
+ {V2c− (1 + V1) d} sin τ

]
n (−1)n sinnπη · e−n2π2τ/R

−4πe−
w0R

2 (η+ 1
2w0τ)−φτ

×
∞∑
n=1

[
[J11 sin τ − J12 cos τ ]n (−1)n sinnπη · e−n2π2τ/R

]
, (19)

g

Ωl
=
e

w0R

2 (1−η)

∆

[
(1 + V1) {P (1)Q (η) −Q (1)P (η)}

+V2 {P (1)P (η) +Q (1)Q (η)}

]

+2πe−
w0R

2 (1+η+ 1
2w0τ)−φτ

×
∞∑
n=1

[ {cV2 − d (1 + V1)} cos τ
−{c (1 + V1) + dV2} sin τ

]
n (−1)n sinnπη · e−n2π2τ/R

−4πe−
w0R

2 (η+ 1
2w0τ)−φτ

×
∞∑
n=1

[
[J11 cos τ + J12 sin τ ]n (−1)n sinnπη · e−n2π2τ/R

]
, (20)

where

R =
Ωh2

ν
, η =

z

h
, τ = Ωt, V1 =

U1

Ωl
, V2 =

U2

Ωl
, w0 =

w0

Ωh
, φ =

φ

Ω
,

∆ = (sinh a cos b)2 + (cosh a sin b)2 ,

P (1) = sinh a cos b, Q (1) = cosh a sin b,

P (η) = sinh aη cos bη, Q (η) = cosh aη sin bη,
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a = ±1
2

√√√√√(
1
4
R2w2

0 +Rφ

)2

+ 4R2 +
(

1
2
R2w2

0 + 2Rφ
)
,

b = ±1
2

√√√√√(
1
4
R2w2

0 +Rφ

)2

+ 4R2 −
(

1
2
R2w2

0 + 2Rφ
)
,

J1 = sinh

√
R

2
cos

√
R

2
, J2 = cosh

√
R

2
sin

√
R

2
,

λ1 = 1 +

√
R

2
w0, λ2 = 1 −

√
R

2
w0,

J3 = sinh

√
R

2
λ1 cos

√
R

2
, J4 = cosh

√
R

2
λ1 sin

√
R

2
,

J5 = sinh

√
R

2
λ2 cos

√
R

2
, J6 = cosh

√
R

2
λ2 sin

√
R

2
,

λ3 =
R

2

(
λ2

1 − 1 + 2
n2π2

R

)
, λ4 = λ1R,

λ5 =
R

2

(
λ2

2 − 1 + 2
n2π2

R

)
, λ6 = λ2R,

c =
a2 − b2 + n2π2

(a2 − b2 + n2π2)2 + 4a2b2
, d =

2ab
(a2 − b2 + n2π2)2 + 4a2b2

,

J7 =
J1 (J3λ3 + λ4J4) + J2 (λ3J4 − λ4J3)

(J2
1 + J2

2 ) (λ2
3 + λ2

4)
,

J8 =
J1 (λ3J4 − λ4J3) − J2 (J3λ3 + λ4J4)

(J2
1 + J2

2 ) (λ2
3 + λ2

4)
,

J9 =
J1 (J5λ5 + λ6J6) + J2 (λ5J6 − λ6J5)

(J2
1 + J2

2 ) (λ2
5 + λ2

6)
,

J10 =
J1 (λ5J6 − λ6J5) − J2 (J5λ5 + λ6J6)

(J2
1 + J2

2 ) (λ2
5 + λ2

6)
,

J11 = J7 + J9, J12 = J8 + J10.

4. Solution at Small Times

In order to obtain the solution at small times we use Laplace transform technique which converges rapidly
at small times. Let us consider the function

F (z, t) = H(z, t)e−iΩt (21)

so that equation (8) and the initial and boundary conditions (9) take the form

ν
∂2H

∂z2
− ∂H

∂t
+ w0

∂H

∂z
− φH = 0, (22)

H (z, 0) = Ωl
sinh kz
sinh kh

,
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H(0, t) = 0, H(±h, t) = ± [(Ωl + U1) + U2] eiΩt. (23)

Applying the Laplace transform to equation (22) and (23), we obtain

ν
d2H̄

dz2
+ w0

dH̄

dz
− (s+ φ)H̄ = −Ωl

sinh kz
sinh kh

, (24)

H (±h, s) = ± [(Ωl + U1) + U2]
s− iΩ , H̄ (0, s) = 0. (25)

The solution of (24) subject to boundary conditions (25) is given by

H̄ (z, s) =
[(Ωl + U1) + U2]

s− iΩ
sinhmz
sinhmh

e
w0
2ν (h−z) − Ωl

s− ψ
sinhmz
sinhmh

e
w0
2ν (h−z)

+
Ωl
s− ψ

sinh kz
sinh kh

, (26)

where

m =

√
w2

0 + 4ν (s+ φ)
2ν

.

Laplace inversion of (26) is given by

H (z, t) = [(Ωl + U1) + U2] e
w0
2ν (h−z) · I1 − Ωle

w0
2ν (h−z) · I2 + Ωl · I3, (27)

where

I1 =
1

2πi

∫ γ+i∞

γ−i∞

sinhmz
(s− iΩ) sinhmh

estds,

I2 =
1

2πi

∫ γ+i∞

γ−i∞

sinhmz
(s− ψ) sinhmh

estds,

I3 =
1

2πi

∫ γ+i∞

γ−i∞

sinh kz
(s− ψ) sinh kh

estds.

In equation (27) we solve the integrals by residue method. Therefore in I1 the residue at s− iΩ is

Res (iΩ) =
sinhσ1z

sinhσ1h
eiΩt,

where

σ1 =

√
w2

0 + 4ν (iΩ + φ)
2ν

.

The other singular points are the zeros of

sinhmh = 0.

Setting m = iα, we find that

sinαh = 0 (28)
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and αn = nπ
h , n = 1, 2, 3, . . . ,∞ are the zeros of equation (28); then

sn = −w
2
0 + 4α2

nν
2 + 4νφ

4ν
, n = 1, 2, 3, . . . ,∞

are the poles. Since all αn, n = 1, 2, 3, . . . ,∞ are symmetrically placed about origin on the real axis, all
poles sn lie on the negative real axis. These are the simple poles and the residue at all these poles can be
obtained as

Res (sn) =
2 (−1)n+1

nπνesnt

h2 (sn − iΩ)
sin

nπ

h
z.

So that the complete solution of I1 is given as

I1 = Res (iΩ) + Res (sn) =
sinhσ1z

sinhσ1h
eiΩt − 2πν

h2

∞∑
n=1

(−1)n nesnt

(sn − iΩ)
sin

nπ

h
z. (29)

Similarly,

I2 =
sinhσ2z

sinhσ2h
eψt − 2πν

h2

∞∑
n=1

(−1)n nesnt

(sn − ψ)
sin

nπ

h
z, (30)

and

I3 =
sinh kz
sinh kh

∞∑
n=1

ψn
tn

n!
. (31)

Using the values from (29)–(31) in (27), we obtain the complete solution

H (z, t) = [(Ωl+ U1) + U2] e
w0
2ν (h−z)

[
sinhσ1z

sinhσ1h
eiΩt − 2πν

h2

∞∑
n=1

(−1)n nesnt

(sn − iΩ)
sin

nπ

h
z

]

−Ωle
w0
2ν (h−z)

[
sinhσ2z

sinhσ2h
eψt − 2πν

h2

∞∑
n=1

(−1)n nesnt

(sn − ψ)
sin

nπ

h
z

]

+Ωl

[
sinh kz
sinh kh

∞∑
n=1

ψn
tn

n!

]
, (32)

where

σ2 =

√
w2

0 + 4ν (ψ + φ)
2ν

.

Finally, from (21) we have

F (η, τ)
Ωl

= [(1 + V1) + V2] e
w0R

2 (1−η)

 sinh
√

w2
0R

2

4
+
(
φ+ i

)
Rη

sinh
√

w2
0R

2

4
+
(
φ+ i

)
R



+
∞∑
n=1

8nπ (−1)n sinnπη
w2

0R
2 + 4n2π2 + 4Rφ+ 4iR

e
−
�

1
4w

2
0R+n2π2

R +φ
�
τ−iτ
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−ew0R

2 (1−η)
sinh

√
w2

0R
2

4
+ Rw0

√
R
2

+ iR
(

1 + w0

√
R
2

)
η

sinh
√

w2
0R

2

4 + Rw0

√
R
2 + iR

(
1 + w0

√
R
2

)

×e
h�
w0

√
R
2 −φ

�
+i

�
w0

√
R
2

�i
τ

+
∞∑
n=1

8nπ (−1)n sinnπη

w2
0R

2 + 4n2π2 + 4iR+ 4Rw0

√
R
2

(1 + i)
e
−
�

1
4w

2
0R+ n2π2

R +φ
�
τ−iτ

+
sinh

√
R
2 (1 + i) η

sinh
√

R
2 (1 + i)

e

h�
w0

√
R
2 −φ

�
+i

�
w0

√
R
2

�i
τ ; (33)

and

f

Ωl
=
e

w0R
2 (1−η)

δ2

[
(1 + V1) {X2 (1)X2 (η) + Y2 (1)Y2 (η)}
−V2 {X2 (1)Y2 (η) − Y2 (1)X2 (η)}

]

+e
w0R

2 (1−η)
∞∑
n=1

8nπ (−1)n sinnπη
R2

5 +R2
6

e
−
�

1
4w

2
0R+n2π2

R +φ
�
τ

× [R5 {(1 + V1) cos τ + V2 sin τ} +R6 {V2 cos τ − (1 + V1) sin τ}]

−e
w0R

2 (1−η)+
�
w0

√
R
2 −φ

�
τ

δ1

 cos
(
w0

√
R
2 τ
)
{X1 (1)X1 (η) + Y1 (1)Y1 (η)}

− sin
(
w0

√
R
2
τ
)
{X1 (1)Y1 (η) − Y1 (1)X1 (η)}



−ew0R

2 (1−η)
∞∑
n=1

8nπ (−1)n sinnπη
R2

1 + R2
2

e
−
�

1
4w

2
0R+ n2π2

R +φ
�
τ (R1 cos τ − R2 sin τ )

+
e

�
w0

√
R
2 −φ

�
τ

δ

 cos
(
w0

√
R
2 τ
)
{X (1)X (η) + Y (1)Y (η)}

− sin
(
w0

√
R
2 τ
)
{X (1)Y (η) − Y (1)X (η)}

 , (34)

g

Ωl
=
e

w0R

2 (1−η)

δ2

[
(1 + V1) {X2 (1)Y2 (η) − Y2 (1)X2 (η)}

+V2 {X2 (1)X2 (η) + Y2 (1)Y2 (η)}

]

+e
w0R

2 (1−η)
∞∑
n=1

8nπ (−1)n sinnπη
R2

5 +R2
6

e
−
�

1
4w

2
0R+n2π2

R +φ
�
τ

× [R5 {V2 cos τ − (1 + V1) sin τ} −R6 {(1 + V1) cos τ + V2 sin τ}]
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−e
w0R

2 (1−η)+
�
w0

√
R
2 −φ

�
τ

δ1

 cos
(
w0

√
R
2
τ
)
{X1 (1)Y1 (η) − Y1 (1)X1 (η)}

+ sin
(
w0

√
R
2 τ
)
{X1 (1)X1 (η) + Y1 (1)Y1 (η)}



+e
w0R

2 (1−η)
∞∑
n=1

8nπ (−1)n sinnπη
R2

1 + R2
2

e
−
�

1
4w

2
0R+ n2π2

R +φ
�
τ (R1 sin τ +R2 cos τ )

+
e

�
w0

√
R
2 −φ

�
τ

δ

 cos
(
w0

√
R
2 τ
)
{X (1)Y (η) − Y (1)X (η)}

+ sin
(
w0

√
R
2
τ
)
{X (1)X (η) + Y (1)Y (η)}

 . (35)

Here,

X (η) = sinh

√
R

2
η cos

√
R

2
, Y (η) = cosh

√
R

2
η sin

√
R

2
,

X (1) = sinh

√
R

2
cos

√
R

2
, Y (1) = cosh

√
R

2
sin

√
R

2
,

δ =

[
sinh

√
R

2
cos

√
R

2

]2

+

[
cosh

√
R

2
sin

√
R

2

]2

,

R1 = R2w0 + 4n2π2 +
4w0R

3
2√

2
, R2 = 4R+

4w0R
3
2√

2
,

R3 = ±1
2

√√√√√
√√√√(

1
4
R2w2

0 +Rw0

√
R

2

)2

+R2

(
1 + w0

√
R

2

)2

+

(
1
4
R2w2

0 +Rw0

√
R

2

)
,

R4 = ±1
2

√√√√√
√√√√(

1
4
R2w2

0 +Rw0

√
R

2

)2

+R2

(
1 + w0

√
R

2

)2

−
(

1
4
R2w2

0 +Rw0

√
R

2

)
,

X1 (η) = sinhR3η cosR4η, Y1 (η) = coshR3η sinR4η,

X1 (1) = sinhR3 cosR4, Y1 (1) = coshR3 sinR4,

δ1 = [sinhR3 cosR4]2 + [coshR3 sinR4]2 ,

R5 = R2w2
0 + 4n2π2 + 4Rφ, R6 = 4R,

X2 (η) = sinhR7η cosR8η, Y2 (η) = coshR7η sinR8η,

X2 (1) = sinhR7 cosR8, Y2 (1) = coshR7 sinR8,

δ2 = [sinhR7 cosR8]2 + [coshR7 sinR8]2 ,

R7 = ± 1√
2

√√√√√(
1
4
R2w2

0 +Rφ

)2

+ R2 +
(

1
4
R2w2

0 +Rφ

)
,

R8 = ± 1√
2

√√√√√(
1
4
R2w2

0 +Rφ

)2

+ R2 −
(

1
4
R2w2

0 +Rφ

)
.
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5. Injection

In case of injection w0 < 0, we take w0 = −ε so that ε > 0. The solution is given by

f

Ωl
=
e−

εR
2 (1−η)

δ2

 (1 + V1)
{
X̂2 (1) X̂2 (η) + Ŷ2 (1) Ŷ2 (η)

}
−V2

{
X̂2 (1) Ŷ2 (η) − Ŷ2 (1) X̂2 (η)

} 

+e−
εR
2 (1−η)

∞∑
n=1

8nπ (−1)n sinnπη

R̂2
5 + R̂2

6

e
−
�

1
4 ε

2R+n2π2
R +φ

�
τ

×
[
R̂5 {(1 + V1) cos τ + V2 sin τ} + R̂6 {V2 cos τ − (1 + V1) sin τ}

]

−e
− εR

2 (1−η)−
�
ε
√

R
2 +φ

�
τ

δ̂1

 cos
(
ε
√

R
2 τ
){

X̂1 (1) X̂1 (η) + Ŷ1 (1) Ŷ1 (η)
}

+ sin
(
ε
√

R
2 τ
){
X̂1 (1) Ŷ1 (η) − Ŷ1 (1) X̂1 (η)

}


−e− εR
2 (1−η)

∞∑
n=1

8nπ (−1)n sinnπη

R̂2
1 + R̂2

2

e
−
�

1
4 ε

2R+ n2π2
R +φ

�
τ (R1 cos τ − R2 sin τ )

+
e
−
�
ε
√

R
2 +φ

�
τ

δ

 cos
(
ε
√

R
2
τ
)
{X (1)X (η) + Y (1)Y (η)}

+ sin
(
ε
√

R
2
τ
)
{X (1)Y (η) − Y (1)X (η)}

 , (36)

g

Ωl
=
e−

εR
2 (1−η)

δ̂2

 (1 + V1)
{
X̂2 (1) Ŷ2 (η) − Ŷ2 (1) X̂2 (η)

}
+V2

{
X̂2 (1) X̂2 (η) + Ŷ2 (1) Ŷ2 (η)

} 

+e−
εR
2 (1−η)

∞∑
n=1

8nπ (−1)n sinnπη

R̂2
5 + R̂2

6

e
−
�

1
4 ε

2R+n2π2
R +φ

�
τ

×
[
R̂5 {V2 cos τ − (1 + V1) sin τ} − R̂6 {(1 + V1) cos τ + V2 sin τ}

]

−e
− εR

2 (1−η)−
�
ε
√

R
2 +φ

�
τ

δ̂1

 cos
(
ε
√

R
2 τ
){

X̂1 (1) Ŷ1 (η) − Ŷ1 (1) X̂1 (η)
}

− sin
(
ε
√

R
2 τ
){
X̂1 (1) X̂1 (η) + Ŷ1 (1) Ŷ1 (η)

}


+e−
εR
2 (1−η)

∞∑
n=1

8nπ (−1)n sinnπη

R̂2
1 + R̂2

2

e
−
�

1
4 ε

2R+ n2π2
R +φ

�
τ
(
R̂1 sin τ + R̂2 cos τ

)

+
e
−
�
ε
√

R
2 +φ

�
τ

δ

 cos
(
ε
√

R
2
τ
)
{X (1)Y (η) − Y (1)X (η)}

− sin
(
ε
√

R
2 τ
)
{X (1)X (η) + Y (1)Y (η)}

 . (37)
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where

X (η) = sinh

√
R

2
η cos

√
R

2
, Y (η) = cosh

√
R

2
η sin

√
R

2
,

X (1) = sinh

√
R

2
cos

√
R

2
, Y (1) = cosh

√
R

2
sin

√
R

2
,

δ =

[
sinh

√
R

2
cos

√
R

2

]2

+

[
cosh

√
R

2
sin

√
R

2

]2

,

R̂1 = −R2ε+ 4n2π2 − 4εR
3
2√

2
, R̂2 = 4R− 4εR

3
2√

2
,

R̂3 = ±1
2

√√√√√
√√√√(

1
4
R2ε2 −Rε

√
R

2

)2

+R2

(
1 − ε

√
R

2

)2

+

(
1
4
R2ε2 − Rε

√
R

2

)
,

R̂4 = ±1
2

√√√√√
√√√√(

1
4
R2ε2 −Rε

√
R

2

)2

+R2

(
1 − ε

√
R

2

)2

−
(

1
4
R2ε2 − Rε

√
R

2

)
,

X̂1 (η) = sinh R̂3η cos R̂4η, Ŷ1 (η) = cosh R̂3η sin R̂4η,

X̂1 (1) = sinh R̂3 cos R̂4, Ŷ1 (1) = cosh R̂3 sin R̂4,

δ̂1 =
[
sinh R̂3 cos R̂4

]2
+
[
cosh R̂3 sin R̂4

]2
,

R̂5 = R̂2w2
0 + 4n2π2 + 4R̂φ, R̂6 = 4R̂,

X̂2 (η) = sinh R̂7η cos R̂8η, Ŷ2 (η) = cosh R̂7η sin R̂8η,

X̂2 (1) = sinh R̂7 cos R̂8, Ŷ2 (1) = cosh R̂7 sin R̂8,

δ̂2 =
[
sinh R̂7 cos R̂8

]2
+
[
cosh R̂7 sin R̂8

]2
,

R̂7 = ± 1√
2

√√√√√(
1
4
R2ε2 +Rφ

)2

+ R2 +
(

1
4
R2ε2 +Rφ

)
,

R̂8 = ± 1√
2

√√√√√(
1
4
R2ε2 +Rφ

)2

+ R2 −
(

1
4
R2ε2 +Rφ

)
.

6. Conclusion

In the present work the magnetohydrodynamics effects are applied to the flow of a Newtonian fluid
between eccentric rotating porous disks. The flow equations are solved analytically by two different methods.
To obtain the large time solution, we applied separation of variable method; and for small time solution,,the
Laplace transform method is used. Suction and blowing cases are discussed separately. It is found that with
an increase in V1 and V2,,the velocity increases;;and with decrease in V1 and V2,,the velocity decreases [13].
The results in this paper is similar to the results of [6] if there are no MHD effects and disks are non-porous.
It is in general observed that the boundary layers are controlled by the MHD effects [13]. However when
the disks are porous, the boundary layer decreases for the suction case (similar to MHD effects) and the
boundary layer increases for the injection or blowing case [14].
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