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Abstract

We present a theoretical approach to describe the dynamics of a system induced by stochastic cou-

plings and undergoing dephasing processes. We consider a model frequently encountered in the study of

non-radiative transitions in molecular systems, the case of two configurations stochastically coupled. In

this model, we use a system whose excited radiant state is coupled stochastically to a non-radiant state

of a lower electronic configuration. We show the line shape for stochastic non-diagonal perturbations

to remain Lorentzian. This result is different from the case of frequency modulation where a transition

from a Gaussian to a Lorentzian line shape can be observed.

Key Words: Non-radiative transition, stochastic approach, relaxation and dephasing processes, ab-

sorption spectrum.

1. Introduction

The problem of spectral line shapes has gained considerable interest in recent decades. In fact, it
has been recognized that physical observations cannot be fully understood without a clear picture of the
quantum-mechanical source of fluctuations and dissipation caused by the interaction of the system with the
surrounding heat bath. Well-know model treatments in the field of spectroscopy are the line shape theories
due to Anderson [1], Kubo and Tomita [2], in which the bath degrees of freedom are assumed to give rise to
white noise or Markovian limit, in which the correlation function is represented by Dirac delta function δ. In
this case, the relaxation behavior of a molecular system can then be described by Bloch optical equations [3,
4] including two phenomenological decay parameters (T−1

1 and T−1
2 representing longitudinal and transverse

relaxation, respectively). The corresponding treatment for the coupled coherent and incoherent motion of
a quantum particle in fluctuating medium is due to Haken, Strobl, and Reineker [5–7]. Here, stochasticity
has been introduced to describe the behavior of excitons in the molecular aggregates, and in which the
exciton-phonon coupling is treated phenomenologically and semiclassically via the introduction of a stochas-
tic term in the Hamiltonian. For colored noise, i.e., a non-Markovian stochastic process with exponentially
decaying correlation functions, the spectroscopic line shape aspect is due to Faid and Fox [8–10] who treated
the deviation from the situation as a perturbation. However, it is remarkable that stochasticity plays an
important role, in particular, in the internal dynamics of the molecules. Works [11–16] on the study of the
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non-radiative transitions in molecular compounds show that these transitions affect the dynamics of the
system. These works were devoted to the evaluation of non-radiative decay rates associated with electronic
or vibrational relaxation processes. The studies varied from the energy dependence of electronic relaxation
processes [11, 12], to the search for criteria irreversible electronic transitions [13–15], to the dependence of
these criteria on the nature of the non-radiative processes, to the real nature of the molecular eigenstate
[16]. That said, the interaction responsible for the non-radiative transitions has been considered as a purely
quantum interaction which depends on the particular process of interest, such as internal conversion, in-
tersystem crossing, etc. From these observations, a stochastic approach offers an interesting alternative to
the description of these processes. More recently, stochasticity has also appeared in the intermediate state
during a resonant optical process of the second order [17–19]. The case of organic dye molecules in solution
is of particular interest since the Raman signals are strong while the fluorescence is weak. As such, the inter-
action with surrounding solvent molecules can suitably modulate the energy of the intermediate state. Note
that an interesting consequence of the statistical distribution of the stochastic interactions is a decoupling
of the dynamical equations of the averaged density matrix elements as opposed to the microscopic quantum
case. Indeed, study of the internal dynamics of a system induced by stochastic couplings and undergoing
dephasing processes has been treated in a Doctoral thesis [20] and in papers [21, 22]. The focus concerned
the relation between frequency modulation and diagonal stochastic perturbations [23–25], recent develop-
ments in the more general case of the non-diagonal stochastic interaction [8–10] leading to a generalization
of the stochastic theory of line shape, and relaxation of Kubo [24]. The principal result is the appearance
of a profile of line shape asymmetry which gives a measure of the degree of anisotropy of the stochastic
interaction [8].

In this work, we present an application relevant to stochastic approach to non-radiative transitions. We
assume that the stochastic interaction are applied only to excited states, whereas the relaxation of the
system is ensured by a purely quantum heat bath. By taking advantage of the stochastic theory presented
in [8], we develop in Section II a general theory of the stochastic to describe the dynamics induced by the
stochastic interactions for a system undergoing relaxation and dephasing processes as well as pure dephasing
processes. In Section III, we consider a particular model frequently encountered in the study of non-radiative
transitions in molecular systems. We restrict our model a stochastic interaction to couple the radiant state
to the non-radiant state. Finally, in Section IV, a detailed analysis of the absorption spectra is given.

2. Theoretical Considerations

In this section, we develop a theory to describe the internal dynamics of stochastic systems. Only the
dynamical evolution of the free system is accounted for here, the interacting fields being introduced as a usual
perturbation calculation up to a given order, depending on the nature of the physical process. This formalism
has advantage over previous theoretical approaches in that it describes the evolution of stochastic systems
undergoing relaxation and dephasing processes, including pure dephasing [26, 27]. In fact, the descriptions
developed in the literature requiring spectral decomposition methods are inappropriate to account for pure
dephasing. Also, this approach is not restricted to the usual single-line approximation, which breaks down
when the resonance overlapping cannot be neglected [28, 29].

We consider a system coupled to a heat bath and undergoing stochastic perturbation. The total Hamil-
tonian can be written as

H = Hs +Hb + H̃ +Hsb = H0 + H̃ +Hsb, (2.1)

where Hs and Hb refer to the Hamiltonian for the system and Hsb represents the interaction between the
system and the heat bath. The system in addition is stochastically perturbed by the interaction H̃(t). The
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Liouville equation describing the motion of density matrix ρ(t)is

∂ρ(t)
∂t

= − i

�

[
H0 + H̃(t) +Hsb, ρ(t)

]
≡ − i

�

[
L0 + L̃(t) + Lsb

]
ρ(t), (2.2)

where

L0 ≡ [Hs +Hb,] , (2.3)

L̃(t) ≡
[
H̃(t),

]
(2.4)

and

Lsb ≡ [Hsb,] (2.5)

represent the Liouville operators corresponding to H0, H̃ and Hsb, respectively. Notice that the commutator
operator [A, B] = AB − BA. The formal solution takes the form

ρ(t) = exp
[
− i

�
L0t

]
←
T exp


− i

�

t∫
0

dτ
[
L̃I (τ ) + LsbI(τ )

]
 ρ(0), (2.6)

where
←
T denotes the time-ordering operator and ρ(0) represents the density matrix at the initial time t = 0.

In addition, L̃I(t) is the Liouville operator in the interaction representation

L̃I(t) = exp
[

i

�
L0t

]
L̃(t) exp

[
− i

�
L0t

]
. (2.7)

Using the cumulant expansion method [23, 30], and developing the expression of the average density matrix
for the material system alone up to the second order, we obtain

〈ρs(t)〉 = exp
[
− i

�
L0t

]
←
T exp


− i

�

t∫
0

dτ

τ∫
0

dλ
[
〈L̃I(τ )L̃I (λ)〉 + 〈LsbI(τ )LsbI(λ)〉

]
 〈ρs(0)〉, (2.8)

where the notation

LsbI(t) = exp
[

i

�
(Ls + Lb) t

]
Lsb exp

[
− i

�
(Ls + Lb) t

]
(2.9)

has been introduced. It will be noted that the average of the first term in the expression (2.8) is over the
stochastic variables while the one of the second term is over the bath states. The first order cumulants are
assumed to be zero. 〈

L̃I(τ )
〉
= 0

Trb

[
L

(
sbIτ )ρ

b(0)
]
= 0,

(2.10)

without loss of generality. Then, the general equation of motion of the material system is given by

∂〈ρs(t)〉
∂t

= − i

�
[Ls + R(t)] 〈ρs(t)〉, (2.11)

where

R(t) = −i� [ΓS(t) + Γ(t)] , (2.12)
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the stochastic operator ΓS(t) is defined by

ΓS(t) =
1
�2

t∫
0

dτ
〈
L̃(t) exp

[
− i

�
(t − τ )Ls

]
L̃(τ ) exp

[
i

�
(t − τ )Ls

]
〉 (2.13)

and the usual damping operator Γ(t) by

Γ(t) =
1
�2

∫ t

0

dτTrb

{
Lsb exp

[
− i

�
(t − τ ) (Ls + Lb)

]
Lsb exp

[
i

�
(t − τ ) (Ls + Lb)

]
ρb(0)

}
, (2.14)

where ρb(0) represents for initial density matrix of the bath. In the following, the bath generating the
constant Γ(t) is assumed to be purely Markovian. Its matrix elements are related the total decay rate Γnnnn

of the state n, the transition rate Γnnmm from state m to state n and dephasing constants Γnmnm related
to states n and m, and is given by [26]

Γnmnm =
1
2
[Γnnnn +Γmmmm ] + Γ(d)

nm, (2.15)

where Γ(d)
nm denotes the pure dephasing constant originating from the elastic interaction process molecules

and heat bath. Throughout this work, the damping operator will insure the thermalization of the material
system. We still mention that an explicit form of the matrix elements of the tetradic ΓS(t) can be evaluated
in the molecular model in the following section.

3. The Molecular Model and Calculation Procedure

In this section, we consider the Feed-Jortner model [31], which has played a central role as a prototype in
the study of non-radiative decay in organic compounds. This model is based on a quantum interaction which
depends on the nature of non-radiative transitions, such as internal conversion, intersystem crossing, etc.
Stochastic approaches offer an interesting alternative to the description of these processes. In addition, the
simplification resulting from the statistical distribution enables the introduction of the dephasing processes.
Also, for the sake of convenience, we introduce the stochasticity in terms of the correlation function of the
interaction [9]

〈H̃ij(t)H̃kl(τ )〉 = �
2 (δωijkl)

2

2
exp [−εijkl |t − τ |] , (3.1)

where the constant δω, defined by

δωijkl = δωijjiδilδjk, (3.2)

denotes the amplitude of the fluctuations and ε−1 in their time scale (correlation time). This has the
advantage over the previous definitions of keeping the various stochastic variables completely independent
so that diagonal as well as non-diagonal stochastic coupling can be treated simultaneously of the same
footing. Also, we observe the same decoupling in the equation of motion of the populations and coherences.
We still need the explicit expressions of the stochastic operator ΓS(t) which drives the evolution of the
average density matrix of the material system alone. It takes the form

[ΓS(t) 〈ρ(t)〉]ij =
1
2

∑
p

{
(δωippi)

2 1− exp [− (εippi + iωpi) t]
εippi + iωpi

〈ρij(t)〉

− (δωpiip)
2 δij

1− exp [− (εpiip + iωip) t]
εipiip + iωip

〈ρpp(t)〉
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− (δωippi)
2
δij
1− exp [− (εippip + iωpi) t]

εiippi + iωpi
〈ρpp(t)〉

+(δωpjjp)
2 1− exp [− (εpjjp + iωjp) t]

εpjjp + iωjp
〈ρij(t)〉} . (3.3)

From the identification of this expression with the formal development

[ΓS(t) 〈ρ(t)〉]ij =
∑
i,j

ΓS ij pq(t) 〈ρpq(t)〉 , (3.4)

and after some simplifications, the matrix elements of the stochastic operators can be expressed as

ΓSijpq(t) = Γ
(1)
Sijpq(t) + Γ

(2)
Sijpq(t), (3.5)

where

Γ(1)
Sijpq(t) =

1
2

∑
l

{
(δωilli)

2 1− exp [− (εilli + iωli) t]
εilli + iωli

+ (δωljjl)
2 1− exp [− (εljjl + iωjl) t]

εljjl + iωjl

}
δipδjq (3.6)

Γ(2)
Sijpq(t) = −1

2

{
(δωpiip)

2 1− exp [− (εpiip + iωip) t]
εpiip + iωip

+ (δωippi)
2 1− exp [− (εippi + iωpi) t]

εippi + iωpi

}
δijδpq (3.7)

In what follows, we apply this approach to a material system where the essential part of the internal dynamics
can be described by a radiant excited state coupled via a stochastic perturbation. In Figure 1 is show one
non-radiant state of a lower electronic configuration.

2211Γ

)(
~

tH
E3

E2

E1

Figure 1. Energy-level scheme of the material system used to study the effect of non-diagonal perturbations between

states |2〉 and |3〉 on the absorption spectra.

The coupling between the radiant state and non-radiant is induced by the non-diagonal stochastic per-
turbation H̃(t), where the average is supposed to be zero and a correlation function in second-order is given
by

〈H̃23(t)H32(t)〉 = �
2 (δω3223)2

2
exp (−ε3223 |t − τ |) . (3.8)

In this approach, we calculated the populations and the coherence for the evaluation the optical line shapes.
For this purpose, we introduce the Liouville equation of the total density matrix ρ(t):

∂ρ(t)
∂t

= − i

�
[L0 +R(t) + LV0 ] ρ(t). (3.9)
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Here, L0 represents the sum of Liouvillians of the free system Ls, the radiation field Lf is defined by

Lf =
[
�ω0C

+
0 C0,

]
, (3.10)

and the Liouvillian LV0 associated with the field- system interaction is given by

LV0 =
[
V12 |1〉 〈2|C+

0 + V21C0 |2〉 〈1| ,
]
. (3.11)

In the previous expressions, C0 and C+
0 denotes the annihilation and creation operators, respectively, of

a photon of frequency ω0 associated with the radiation field. In addition the operators of the Liouville
R(t) previously described, includes the non-Markovian case of the stochastic operator ΓS(t), and the usual
damping operator Γ describes spontaneous emission. For our model the matrix elements of the R(t) are
assumed to be zero: R2211(t) = R3311(t) = 0.

The equation of motion of the matrix elements density can be written

∂ρ22(t)
∂t

= − i

�
[R2222(t)ρ22(t) +R2233(t)ρ33(t) + V021ρ12(t)− V012ρ21(t)]

∂ρ33(t)
∂t

= − i

�
[R3322(t)ρ22(t) + R3333(t)ρ33(t))]

∂ρ12(t)
∂t

= − i

�
[(R1212(t) + E12) ρ12(t) + V012 (−1 + 2ρ22(t) + ρ33(t))] , (3.12a)

∂ρ13(t)
∂t

= − i

�
[(R1313(t) +E13) ρ13(t) + V12ρ23(t)]

∂ρ23(t)
∂t

= − i

�
[(R1313(t) +E23) ρ23(t) + V21ρ13(t)] , (3.12b)

to which should be added the well known relations of conservation of the populations and complex conjugation
of the coherences ρmn(t). We will note in relations (3.12) the decoupling between the populationsρ22(t) and
ρ33(t), and coherence ρ12(t) one the one hand, and the coherences ρ13(t) and ρ23(t) on the other hand.
We start by solving the second equations of system (3.12). If we consider the solution in the zero order
approximation, this equation becomes

∂ρ
(0)
23 (t)
∂t

= − i

�
[R2323(t) +E23] ρ

(0)
23 (t) (3.13)

which, taking into account the initial conditions ρ
(0)
13 (0) = ρ

(0)
23 (0) = 0, give

ρ
(0)
13 (t) = ρ

(0)
23 (t) = 0. (3.14)

Next, we consider the first order approximation, the equations take the form

∂ρ
(1)
13 (t)
∂t

= − i

�

[
(R1313(t) +E13) ρ

(1)
13 (t) + V012ρ

(0)
23 (t)

]

∂ρ
(1)
23 (t)
∂t

= − i

�

[
(R2323(t) + E23) ρ

(1)
23 (t) + V021ρ

(0)
13 (t)

]
(3.15)
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and using relation (3.15) we obtain the same solutions previously determined

ρ
(1)
13 (t) = ρ

(1)
23 (t) = 0. (3.16)

Similarly, by recurrence, for order n, we have ρ
(n)
13 (t) = ρ

(n)
23 (t) = 0. Consequently, the coherences ρ13(t) and

ρ23(t) are rigorously zero for this system. We also have to determine the populations and coherence ρ12(t).
Here, we still have to solve the equation of system from the perturbation method. We find for the zero order
approximation

∂ρ
(0)
22 (t)
∂t

= − i

�

[
R2222(t)ρ

(0)
22 (t) + R2233(t)ρ

(0)
33 (t)

]

∂ρ
(0)
33 (t)
∂t

= − i

�

[
R3322(t)ρ

(0)
22 (t) +R3333(t)ρ

(0)
33 (t))

]

∂ρ
(0)
12 (t)
∂t

= − i

�
[R1212(t) +E12] ρ

(0)
12 (t). (3.17)

If we assume at initial time the material system in the ground state |1〉, then the solutions for the zero order
can be simplified to

ρ
(0)
22 (t) = ρ

(0)
33 (t) = ρ

(0)
12 (t) = 0. (3.18)

Similarly, for the first order, the system of equations become

∂ρ
(1)
22 (t)
∂t

= − i

�

[
R2222(t)ρ

(1)
22 (t) +R2233(t)ρ

(1)
33 (t) + V021ρ

(0)
12 (t) − V012ρ

(0)
21

]

∂ρ
(1)
33 (t)
∂t

= − i

�

[
R3322(t)ρ

(1)
22 (t) +R3333(t)ρ

(1)
33 (t))

]

∂ρ
(1)
12 (t)
∂t

= − i

�

[
(R1212(t) +E12) ρ

(1)
12 (t) + V012

(
−1 + 2ρ(0)

22 (t) + ρ
(0)
33 (t)

)]
. (3.19)

The first order corrections to populations are zero:

ρ
(1)
22 (t) = ρ

(1)
33 (t) = 0. (3.20)

Then, the contribution to coherences is nonzero, and the formal solution takes the form

ρ
(1)
12 (t) =

i

�

∫ t

0

dτV012 exp
[
− i

�

∫ t

t1

dτ (R1212(τ ) + E12)
]

. (3.21)

Therefore, we are now able to determine the absorption spectrum. At this stage, it is essential to note that
contrary to the case frequency modulation, here E12 include the energy zero order of the material system
and of the field given by energy �ω0. Under these conditions, E12 = E1 − E2 + �ω0.

4. Absorption Spectrum

In this section, we shall apply the theoretical results developed in the previous sections to the absorption
spectrum. The expression of the absorption spectrum results from the decrease of the incident beam intensity
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as a function of the frequency. Consequently, the absorption spectrum is deduced from the radiation field,
and its observable can be defined by

S(ω0, t) = − d

dt
C+

0 C0. (4.1)

This observable can be still written under the terms of the Heisenberg equation of motion for the operators,

S(ω0 , t) = − i

�

[
H(t), C+

0 C0

]

= − i

�

[
V0, C

+
0 C0

]
, (4.2)

since all the parts the Hamiltonian of the total system commute with C+
0 C0. The absorption spectrum is

now given by the averaged of this observable evaluated at first order one of this operator, that is to say

IAb(ω0, t) = Tr
[
S(ω0)ρ(1)(t)

]
, (4.3)

if ρ(1)(t) denotes the matrix density of the total system; then with relation (4.2) one has

IAb(ω0, t) = − i

�
Tr

{[
V0, C

+
0 C0

]
ρ(1)(t)

}
, (4.4)

and it still can be expressed in the form

IAb(ω0, t) =
i

�
Tr

{
C+

0 C0

[
V0, ρ

(1)(t)
]}

=
i

�
Tr

{
C+

0 C0LV0ρ
(1)(t)

}
. (4.5)

Using the expression (3.11), the absorption spectrum can be expressed as

IAb(ω0, t) =
i

�
Tr

{[−V21 |2〉 〈1|C0 + V12 |1〉 〈2|C+
0

]
ρ(1)(t)

}
. (4.6)

Here the trace is over the material system states and the field states, and we have used the invariance of
the trace by circular permutation, and the rules of commutation of the operators of field C0 and C+

0 . We
evaluate the trace from the system and the field states, i.e., |1, N0〉 and |2, N0 − 1〉. We then have

IAb(ω0, t) =
i

�
{−V21 〈N0 − 1|C0 |N0〉 〈1, N0| ρ(1)(t) |2, N0 − 1〉

+V12 〈N0|C0 |N0 − 1〉 〈2, N0 − 1| ρ(1)(t) |1, N0〉} . (4.7)

The density matrix elements of ρ(1)(t) can be obtained directly from the perturbation calculation of relation
(3.20). We mention that the stochastic operator ΓS1212(t) must be evaluated in the base of the total system.
Under these conditions, the absorption spectrum is written

IAb(ω0, t) =
2N0 |V12|2

�2

{∫ t

0

dt1 exp
[
− i

�

∫ t

t1

dτ (R1212(τ ) +E12)
]
+ C.C.

}
, (4.8)

where the symbol C.C. represents the complex conjugate part. If we note the stochastic coupling intervenes
only between states having the same number of photons, then the energy of the field does not intervene. The
matrix element R1212(t) was evaluated previously; it is given by relations (2.12) and (3.5). In the particular
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case of our model, including the excited configuration only one radiant state and only one non-radiant state,
its expression is reduced to

R1212(t) = −i�

{
Γ1212+

1
2
(δω3223)

2 1− exp [− (ε3223 + iω23) t]
ε3223 + iω23

}
. (4.9)

The absorption spectrum takes the form

IAb(ω0, t) =
2N0 |V12|2

�2
Re

∫ t

0

dτ exp

{[
− i

�
E12 − Γ1212 − (δω3232)

2

2 (ε3232 + iω23)

]
(t − t1)

}

× exp
{
− (δω3223)

2

2 (ε3223 + iω23)
2 [exp (−(ε3223 + iω23)t)− exp (−(ε3223 + iω23)t1)]

}
, (4.10)

where the general solution can be represented as a continued fraction. At this stage, we will note with the
initial conditions we have fixed at t = 0, the steady state regime will be reached only for times longer than
characteristic times of the material system defined by Γ−1

1122 and Γ
−1
1212. We will then obtain the general

expression of the absorption spectrum, which will enable us to clarify the limit situations corresponding to
white noise or fast fluctuations limit case. Taking into account the correlation function of (3.1), the white
noise is characterized by the condition

δω3223 ≺≺ ε3223, (4.11)

and in this case, the relation (4.10) takes the form

IAb(ω0, t) =
2N0 |V12|2

�2
Re

∫ t

0

dτ exp

{[
− i

�
E12 − Γ1212 − (δω3232)

2

2 (ε3232 + iω23)

]
(t − t1)

}
. (4.12)

This expression results, on the one hand, from steady state regime for which

exp (−ε3223t) ≤ exp (−ε3223t1) ≺≺ 1, (4.13)

since the principal contribution to the integral is obtained when t1 ≈ t. But on the other hand, the white
noise condition (4.11) allows one to obtain

exp

{
− (δω3223)

2

2 (ε3223+ iω23)
2 [exp (−(ε3223 + iω23)t) − exp (−(ε3223 + iω23)t1)]

}
≈ 1. (4.14)

After integration, we obtain for t → ∞ the absorption spectrum in the white noise

IAb(ω0) =
2N0 |V12|2

�2

Γ1212+
(δω3223)2ε3223

2(ε2
3223+ω2

23)[
ω0 − ω21 − (δω3223)

2ω23

2(ε2
3223+ω2

23)

]2

+
[
Γ1212 +

(δω3223)2ε3223

2(ε2
3223+ω2

23)

]2 , (4.15)

which is quite similar to the one obtained in the frequency modulation case. We find a simple Lorentzian
line shape centered at the natural frequency ω0 = ω21+

(δω3223)
2ε3223

2(ε2
3223+ω2

23)
, of which the contribution to the width

at half maximum of line shape is

γ = (δω3223)
2 ε3223

ε2
3223+ ω2

23

, (4.16)

is lower than the amplitude of the correlation δω3223. Moreover, one observes here additional motional
narrowing effect in the absorption spectrum, which varies as a simple Lorentzian as a function of the detuning
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frequency ω23. Our result does reduce to Kubo [22] in absence of non-diagonal stochastic terms. Finally, we
consider the second case associated with the colored noise or slow fluctuations limit defined by

δω3223 �� ε3223. (4.17)

The discussion of this limit is more delicate because δω3223/ε3223 tends to infinity. Whereas the exponential
in brackets in relation (4.10) tends to zero for sufficiently long times. In order to simplify the discussion, we
note that the absorption spectrum IAb (ω0, t) depends on the quantity

I(ω0) = lim
t→∞

∫ t

0

f(t, t1)g(t, t1)dt1, (4.18)

where

f(t, t1) = exp

{[
− i

�
E12 − Γ1212+

i

2
(δω3232)

2
ω23

ε2
3223 + ω2

23

− 1
2
(δω3223)

2
ε3223

ε2
3223 + ω2

23

]
(t − t1)

}

g(t, t1) = exp

{
− (δω3223)

2

2 (ε3223 + iω23)
2 [exp (−(ε3223 + iω23)t)− exp (−(ε3223 + iω23)t1)]

}
. (4.19)

Figure 2 shows the general shape of the real part of the term as a function of t1.

-0.25

0.00

0.25

0.50

0.75

1.00

90 92 94 96 98 100

t1

R
e[

f(
t,t

1)
]

Figure 2. Variation of the real part of the f(t, t1) as a function of t1. Here, t = 100, E12/~ = 0, ω23 = 0.32,

(δω3223)
2 = 1, ε3223 = 0.01, Γ12 12 = 1.

To represent this curve, we have taken a finite time, in units of Γ1212. The function takes significant
values only in the vicinity of t1 ∼= t. It can be monotonic if ω23 = 0and

(E2−E1)
�

= ω0, or exhibit oscillations
for nonzero values of the parameters. The limit of the f(t, t = t1) always equals one. Since this term appears
under integral, more numerous are the oscillations, smaller the result will be. This term alone leads to a
Lorentzian line shape. For finite times, the second term also presents oscillations when ω23 �= 0. The real
part tends to one, whereas the imaginary part tends to zero when t tends to infinity. Also, in all cases,
g(t, t1) is an increasing envelope function. Figure 3 shows the particular case where ε3223 is small and for
which recurring oscillations typical of phenomena of memory appear.
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Figure 3. Variation of the real part of the g(t, t1) as a function of t1. t = 100, E12/~ = 0, ω21 = 0.32, (δω3223)
2 = 1,

ε3223 = 0.01, Γ1212 = 1.

The product of the two terms contributes to the integral only for t1 near t. When t1 is near zero, the
variation of the f(t, t1) takes over and the product remains very small, whatever the selected parameters.
Figure 4 shows the product of the two terms represented in Figures 2 and 3.

-0,2

0

0,2

0,4

0,6

0,8

1

1,2

90 95 100

t1

R
e[

f(t
,t1

)*
g(

t,t
1)

]

Figure 4. Variation of the real part of the product of the two terms f(t, t1) and g(t, t1) as a of function of t1.

t = 100., E12/~ = 0.,ω23 = 0.32, (δω3223)
2 = 1., ε3223 = 0.01, Γ1212 = 1.

It can be noticed that the g(t, t1) still modifies clearly the form of f(t, t1) because t, although long, is
finite. In fact, the absorption spectrum is defined only in the limit where t tends to infinity, because the
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initial conditions were defined att = 0. Consequently, one can putg(t, t1) = 1 and take t long with respect
to the inverse of the dephasing constant Γ−1

1212 of the system. It results from these observations that the line
shape of the absorption spectrum in the presence of a non-diagonal stochastic interaction will be Lorentzian
as in the other limit case. Its width at half maximum is given by

δ = 2Γ1212+
(δω3223)

2
ε3223

ε2
3223 + ω2

23

. (4.20)

In addition, the frequency shift ∆ω is given by

∆ω = −1
2
(δω3223)

2
ω23

ε2
3223 + ω2

23

, (4.21)

when ω23 �= 0. Figure 5 shows three typical situations: (a) natural line width in the absence of stochastic
interaction, (b) line broadened by stochastic interaction and (c) line broadened and shifted in frequency.
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Figure 5. we represent the variation of the absorption spectra I(ω0) as a function of frequency detuning (ω0 −ω12)

for different cases

(a) ω23 = 0., (δω3223)
2 = 0., ε3223 = 1.,Γ1212 = 1.

(b) ω23 = 0., (δω3223)
2 = 2., ε3223 = 1.,Γ1212 = 1.

(c) ω23 = 0.32., (δω3223)
2 = 10., ε3223 = 1.,Γ1212 = 1.

5. Conclusion

In this article, we have presented a general formalism to describe a material system coupled to a heat
bath and undergoing stochastic perturbations. We have assumed the heat bath purely quantum in nature,
generates relaxation and dephasing processes.

For such systems, by taking advantage of a general formalism presented in paper [8], and to extend it
more complex systems, we have developed a stochastic approach which enables us to study how the stochastic
interaction acting on the excited states of the system affect the dynamical evolution. Our description is valid
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for diagonal and non-diagonal interaction. Also, dephasing processes have been introduced in the model.
This point is of particular interest since the important role by coherence effects in non-radiative decay
has been demonstrated [32]. For this purpose, we have considered a system of which the excited radiant
state is coupled stochastically to a non-radiant state of a lower electronic configuration. In this case, we
have determined the absorption spectrum in the white noise and colored noise limits. In addition, we have
found the line shape for stochastic non-diagonal perturbations to remain Lorentzian. This result is different
from the case of motional-narrowing limit of frequency modulation where a transition from a Gaussian to a
Lorentzian line shape can be observed. It would be interesting to be able to extend our study if one would
have not one, but an ensemble of isoenergetic non-radiant states with excited state radiant.
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