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Abstract

Time dependent entropy of constant force motion is investigated. Obtained is the joint entropy, also
known as the Leipnik entropy. The main purpose of this work is to calculate the Leipnik entropy via a
time dependent wave function which is obtained by the Feynman path integral method. For this case it
is found the Leipnik entropy increases with time, and is the same behavior as in the free particle case.
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1. Introduction

Information entropy plays a major role in a stronger formulation of the uncertainty relations [1]. This
formulation may be mathematically defined by using the Boltzmann-Shannon information entropy and the
von Neumann entropy. Unlike in classical (Shannon) information theory, quantum (von Neumann) condi-
tional entropies can be negative when considering quantum entangled systems, a fact related to quantum
non-separability. The possibility that negative (virtual) information can be carried by entangled particles
suggests a consistent interpretation of quantum informational processes [2].

In the literature for both open and closed quantum systems, different information-theoretical entropy
measures have been discussed [3, 4, 5]. In contrast, joint entropy [6, 7] can also be used to characterize
the loss of information related to evolving pure quantum states [8]. The joint entropy of physical systems
were conjectured by Dunkel and Trigger [9], and named their systems MACS, maximal classical states. The
Leipnik entropy of the simple harmonic oscillator was found not to monotonically increase with time [10].
In this work, we give a uniform description of the complete joint entropy information of systems in motion
under a constant force.

This paper is organized as follows. In section II, we explain fundamental definitions needed for the
calculation. In section III, we deal with calculation and results for constant force systems. Moreover, we
obtain the analytical solution of Kernel, wave function in both coordinate and momentum space and its joint
entropy. Finally, we present the conclusion in section IV.

2. Fundamental Definitions

We consider a classical system with n = sN degrees of freedom, where N is the particle number and s
is number of spatial dimensions. Apart from this, let us describe g(x, p, t) = g(x1, ..., xn, p1, ..., pd, t). It
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ÖZCAN, AKTÜRK, SEVER

is non-negative, time dependent phase space density function of system. The density function is assumed
normalized to unity: ∫

dx dp g(x, p, t) = 1. (1)

The Gibbs-Shannon entropy is described by

S(t) = − 1
N !

∫
dx dp g(x, p, t) ln(hdg(x, p, t)), (2)

where h = 2πh̄ is the Planck constant. Schrödinger wave equation with the Born interpretation [11] is given
by

ih̄
∂ψ

∂t
= Ĥψ. (3)

The quantum probability densities are defined in position and momentum spaces as |ψ(x, t)|2 and |ψ̃(p, t)|2,
where |ψ̃(p, t)|2 is given as

ψ̃(p, t) =
∫
dx e−ipx/h̄

(2πh̄)d/2
ψ(x, t). (4)

Leipnik proposed the product function as

gj(x, p, t) = |ψ(x, t)|2|ψ̃(p, t)|2 ≥ 0. (5)

Substituting equation (5) into equation (2), we get the joint entropy Sj(t) for the pure state ψ(x, t), or
equivalently, can be written in the form [9]

Sj(t) = −
∫
dx|ψ(x, t)|2 ln |ψ(x, t)|2 −

∫
dp|ψ̃(p, t)|2 ln |ψ̃(p, t)|2 − lnhd. (6)

We find time dependent wave function by means of the Feynman path integral, which has form [12]

K(x′′, t′′; x′, t′) =
∫ x′′=x(t′′)

x′=x(t′)
Dx(t)e

i
h̄ S[x(t)]

=
∫ x′′

x′
Dx(t)e

i
h̄

R t′′
t′ L[x,ẋ,t]dt. (7)

The Feynman kernel can be related to the time dependent Schrödinger’s wave function:

K(x′′, t′′; x′, t′) =
∞∑

n=0

ψ∗
n(x

′, t′)ψn(x′′, t′′). (8)

The propagator in semiclassical approximation reads

K(x′′, t′′; x′, t′) =
[ i

2πh̄
∂2

∂x′∂x′′
Scl(x′′, t′′; x′, t′)

]1/2

e
i
h̄ Scl(x

′′,t′′;x′,t′). (9)

The prefactor is often referred to as the Van Vleck-Pauli-Morette determinant [13, 14]. The function
F (x′′, t′′; x′, t′) is given by

F (x′′, t′′; x′, t′) =
[ i

2πh̄
∂2

∂x′∂x′′
Scl(x′′, t′′; x′, t′)

]1/2

. (10)
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3. Calculation and Results

3.1. Constant Force

The Lagrangian for the present case is

L(x, ẋ, t) =
1
2
mẋ2 + fx (11)

The classical path obeys

mẍcl = f. (12)

The solution of the above equation is

xcl(τ ) = x0 +
(x− x0

t− t0
− 1

2
f

m
(t− t0)

)
τ +

1
2
f

m
τ2. (13)

One obtains for classical action integral along the classical path

S(xcl(τ )) =
1
2
m
(x− x0)2

t− t0
+
1
2
(x+ x0)f(t − t0) − 1

24
f2

m
(t − t0)3. (14)

And finally, for the kernel we have

K(x′′, x′; T ) =
[ m

2πih̄T

]1/2

exp
[
im

2h̄
(x− x0)2

T
+

i

2h̄
(x + x0)fT − i

24h̄
f2

m
T 3

]
. (15)

The dependent wave function at time t > 0 is

Ψ(x, t) =
[1− i h̄t

mσ2

1 + i h̄t
mσ2

]1/4[ 1
πσ2(1 + h̄2t2

m2σ4 )

]1/4

exp
[
− (x− p0

m
t− ft2

2m
)2

2σ2(1 + h̄2t2

m2σ4 )
×

× (1 − i
h̄t

mσ2
)
]
exp

[ i
h̄
(p0 + ft)x − i

h̄

∫ t

0

dτ
(p0 + fτ)2

2m

]
(16)

Ψ(x, t) =

[
1− i h̄t

mσ2

1 + i h̄t
mσ2

]1/4

 1

πσ2
(
1 + h̄2t2

m2σ4

)



1/4

× exp


−

(
x− p0

m
t− ft2

2m

)2

2σ2
(
1 + h̄2t2

m2σ4

) (
1− i

h̄t

mσ2

)
 (17)

× exp
[
i

h̄
(p0 + ft)x − i

h̄

∫ t

0

dτ
(p0 + fτ)2

2m

]
,

where σ is width of Gaussian curve. The corresponding probability distribution is

|Ψ(x, t)|2 =
[

1
πσ2(1 + h̄2t2

m2σ4 )

]1/2

exp


−

(
x− p0t

m − ft2

2m

)2

σ2
(
1 + h̄2t2

m2σ4

)

 , (18)

or

|Ψ(x, t)|2 =
[

1
πσ2(1 + h̄2t2

m2σ4 )

]1/2

exp


−

(
x− p0t

m − ft2

2m

)2

σ2
(
1 + h̄2t2

m2σ4

)

 . (19)

The probability density in coordinate space is shown Figure 1. The probability density in momentum space
can be written easily as
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|Ψ(p, t)|2 =
[
σ2

πh̄2

]1/2

exp
[−σ2

h̄2 (p + (p0 + ft))2
]

(20)

The time dependent joint entropy can be obtained from equation 6 as

Sj(t) = ln
( e
2

)√
1 +

h̄2t2

m2σ4
. (21)

The joint entropy of this system is shown Figure 2 and Figure 3. It is important that equation 20 is in
agreement with following general inequality for the joint entropy:

Sj(t) ≥ ln
(e
2

)
(22)
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Figure 1. |Ψ(x, t)|2 versus time and coordinate
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Figure 2. The counter graph of |Ψ(x, t)|2
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Figure 3. The joint entropy of constant forces motion versus time

originally derived by Leipnik for arbitrary one-dimensional one-particle wave functions.

4. Conclusion

We have investigated the joint entrophy for a motion going with a constant force. We have obtained the
time dependent wave function by means of Feynman Path integral technique. We have found that the joint
entropy increases with time and the results are in harmony with prior studies. Joint entropy has same the
behavior as the free particle case. This result indicates that the information entropy increases with time.
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