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Abstract

We find the Green function of the Schrodinger equation for the Morse potential using perturbation

series. By Fourier transformation on the end point of the perturbation series, and with some formulas

for terms generating the perturbation series, we are able to derive the Green function of the problem.
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1. Introduction

Most physical problems cannot be treated exactly. It then becomes then necessary to develop different
methods of approximation allowing one to approach the exact result with an appropriate accuracy. The
most important and popular approximation method for solving problems in quantum mechanics, is the
perturbation theory in the Schroëdinger formalism. It provides us with an effective method to compute the
approximate solutions of many problems which can not be solved exactly. As in standard quantum mechanics,
the perturbation method can be developed in the path integral framework of quantum mechanics [1].

In the last few decades, perturbation expansion of the path integral has been used to give the exact
Green’s functions for delta-function potential problems [2–4], for non-relativistic Coulomb systems [5], for the
relativistic problem by summing the delta-function perturbation series [6], and for the relativistic Coulomb
problem [7]. In addition, the perturbative approach was successfully used for deriving the energy Green
function for the inverse square potential [8], and recently for the step potential [9].

In this paper, we would like to add a further contribution to the perturbation method. This contribution,
which has not been treated to our knowledge and in this context, concerns the energy Green function of
a Morse system, for bound states (for which the energy is negative), via summing over the perturbation
series. However, we must mention that the Green function of the Morse potential was calculated by different
authors using the standard method in quantum mechanics [10], or a path integral framework [11–14].
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2. Perturbation Series of the Morse Potential

Consider the classical Lagrangian with a unit mass (m = 1):

L(x,
.
x, t) =

.
x

2

2
− V (x), (1)

where

V (x) = V0(exp(−2x)− 2 exp(−x)),

and V0 > 0 is the strength of the potential. The Feynman propagator is defined, taking � = 1, by

K(x, T/x0, 0) =

x(T )=x∫
x(0)=x0

D[x(t)] exp(i

T∫
0

L(x,
.
x, t)dt) (2)

where D[x(t)] is the formal measure on the path space. If we split the Lagrangian into the free part and the
interaction part, we can show that the propagator takes the form

K(x, T/x0, 0) =
∞∑

n=0

(i)n Kn(x, T/x0, 0), (3)

where

Kn(x, T/x0, 0) = (−1)n
T∫

0

dtn · · ·
t2∫

0

dt1

+∞∫
−∞

· · ·
+∞∫

−∞

j=n∏
j=0

K0(xj+1, tj+1/xj, tj)
j=n∏
j=1

V (xj)dxj (4)

and K0(xj+1, tj+1/xj, tj) is the free particle propagator given by

K0(xj+1, tj+1/xj, tj) =
(

1
2iπ(tj+1 − tj)

)1/2

exp(i(xj+1 − xj)2/2(tj+1 − tj)). (5)

Now we take the Fourier transform of Kn(x, T/x0, 0) on T as

Gn(x, x0 : E) = Gn(x, x0) =

∞∫
0

Kn(x, T/x0, 0) exp(iET )dT, (6)

which can be rewritten as

Gn(x, x0) = (−1)n
+∞∫

−∞
· · ·

+∞∫
−∞

j=n∏
j=0

G0(xj+1, xj)
j=n∏
j=1

V (xj)dxj

= (−1)n
+∞∫

−∞

dxnG0(x, xn)V (xn)
j=n−1∏

j=0

G0(xj+1, xj)
j=n−1∏

j=1

V (xj)dxj

= −
+∞∫

−∞

dxnG0(x, xn)V (xn)Gn−1(xn, x0), (7)

where

G0(x, xn) =

∞∫
0

dT ·K0(x, T : xn, 0) exp(iET )

=

∞∫
0

√
1

2iπT
dT · exp

(
iET +

i

2T
(x− xn)2

)
, (8)
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If we put V (x) in the suitable form

V (x) = V0(exp(−2x)− 2 exp(−x)) = 4V0

s=2∑
s=1

(−1/2)s exp(−sx), (9)

equation (7), using (8), becomes

Gn(x, x0) = −4V 0

s=2∑
s=1

(−1/2)s
∞∫
0

√
1

2iπT
dT · exp (iET )

∞∫
−∞

dxn · exp
(
−sxn +

i

2T
(x− xn)2

)
Gn−1(xn, x0) = (10)

−4V 0

s=2∑
s=1

(−1/2)s exp(−sx)

∞∫
0

√
1

2iπT
dT · exp (iET )

∞∫
−∞

dxn · exp
(
s(x − xn) +

i

2T
(x− xn)2

)
Gn−1(xn, x0). (11)

We now take the Fourier transform of Gn(x, x0) on the end point x:

G̃n(ω, x0) =

+∞∫
−∞

dx exp(iωx)Gn(x, x0) =

−4V 0

s=2∑
s=1

(−1/2)s
∞∫
0

√
1

2iπT
dT · exp (iET )

+∞∫
−∞

dx exp((iω − s)x)

∞∫
−∞

dxn · exp
(
s(x − xn) +

i

2T
(x− xn)2

)
Gn−1(xn, x0). (12)

We note here that the integrals over x and xn have a convolution form whose calculation is easily performed:

G̃n(ω, x0) = −4V 0

s=2∑
s=1

(−1/2)s
∞∫
0

√
1

2iπT
dT · exp (iET )

 +∞∫
−∞

dx exp(iΩx) exp(sx +
i

2T
x2)

 G̃n−1(Ω, x0), (13)

where Ω = ω + is. Knowing that the integral in the square brackets is equal to

+∞∫
−∞

dx exp(iωx +
i

2T
x2) =

√
2iπT exp(− iω2T

2
), (14)
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we find that

G̃n(ω, x0) = −4V 0

s=2∑
s=1

(−1/2)s
∞∫
0

dT · exp iT
(
E − ω2

2

)
G̃n−1(Ω, x0). (15)

We are interested in the bound states for which E is negative (E = −ε2); thus we now we perform the
integral over T :

−2if0(ω) ≡
∞∫
0

dT · exp iT
(
E − ω2

2

)
=

∞∫
0

dT · exp
[
−iT

(
ε2 +

ω2

2

)]
=

−2i
2ε2 + ω2

. (16)

After inserting the last formula in (15) we find, after summing over s in (15), a recurrence relation for n ≥ 1:

G̃n(ω, x0) = − V0f0(ω)
[
G̃n−1(ω + 2i, x0)− 2G̃n−1(ω + i, x0)

]
, (17)

and for the lower order this last equation translates into

G̃n−1(ω + i, x0) = iV 0

(
2

2ε2 + (ω + i)2

)[
G̃n−2(ω + 3i, x0)− 2G̃n−2(ω + 2i, x0)

]
(18)

and

G̃n−1(ω + 2i, x0) = iV 0

(
2

2ε2 + (ω + 2i)2

) [
G̃n−2(ω + 4i, x0)− 2G̃n−2(ω + 3i, x0)

]
, (19)

and so on. If we continue the recurrence to the lower orders, we find the expression of G̃0(ω + ni, x0)

G̃0(ω + ni, x0) =

+∞∫
−∞

dx exp(i(ω + ni)x)G0(x, x0)

= −
(

2i
2ε2 + (ω + ni)2

)
exp(iω − n)x0

= −2ifn(ω) exp(iω − n)x0, (20)

where

fn(ω) =
1

2ε2 + (ω + ni)2
; n = 1, 2 . . . . (21)

Then for n = 1 in (17), we find:

G̃1(ω, x0) = 22V0 f0(ω) exp(iωx0) [f2(ω) exp(−2x0) − 2f1(ω) exp(−x0)]

and

G̃2(ω, x0) = i23V 2
0 f0(ω) exp(iωx0)

[f2(ω)f4(ω) exp(−4x0)− 2f2(ω)f3(ω) exp(−3x0)

−2f1(ω)f3(ω) exp(−3x0) + 4f1(ω)f2(ω) exp(−2x0)] ;

and in a similar way we obtain the other terms.
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Hence, using the recurrence relation (17), we can show that each term G̃n(ω, x0) is written as a sum of
exponentials, exp(−kx0), i.e.,

G̃n(ω, x0) =
k=2n∑
k=n

Ck(ω) exp(−kx0), (22)

since G̃(ω, x0) is of the form

G̃(ω, x0) =
∞∑

n=0

(i)n G̃n(ω, x0).

We note [14] that the perturbation series of the propagator is not analytic but is uniformly absolutely
convergent in the coupling constant for every compact set in the variables x, t, x0, t0 = 0. Then from (22), if
we bring together all terms in power of exp(−x0), we find

G̃(ω, x0) = 2if0(ω) exp(iωx0)

[ ∞∑
n=0

an(ω) exp(−nx0)

]
, (23)

where the coefficients an(ω) satisfy a recurrence formula

an(ω) = 2V0fn(ω) (2an−1(ω) − an−2(ω)) , (24)

or (
2ε2 + ω2 − n2 + 2niω

)
an(ω) = 2V0(2an−1(ω) − an−2(ω)), (25)

with a−1 = 0, a0 = −1; a1(ω) = −4V0f1(ω) etc. Noting the series in brackets in (23) by:

2if0(ω)F (X) = 2if0(ω)
∞∑

n=0

an(ω)Xn ≡ G̃(ω, x0) exp(−iωx0), (26)

we can check then that the series F (X), the generating function of an(ω), satisfies the differential equation

X2F ”(X) +X(1 − 2iω)F ′(X) − (
2ε2 + ω2 − 4XV0 + 2X2V0

)
F (X) = 2ε2 + ω2. (27)

Then with (26) and (27), we find that G̃(ω,X) must satisfy the differential equation

−1
2

d

dX

(
X2 d

dX
G̃(X)

)
+

[
V0(X2 − 2X) + ε2

]
G̃(X) = −iX−iω . (28)

We note that this equation is equivalent to those governing Green’s function itself but written in a form
where we have put X = exp(−x0) and done the Fourier transform on the end point x, i.e.[

−1
2

d2

dx2
0

+ V (x0) + ε2
]
G(x, x0/E) = −iδ(x0 − x). (29)

We will return to the homogeneous equation associate to (28), i.e.

−1
2

d

dX

(
X2 d

dX
G̃(X)

)
+

[
V0(X2 − 2X) + ε2

]
G̃(X) = 0, (30)

which is an equation of the hypergeometric class with two linearly independent solutions

Ğ1(X) = X− 1
2M√

2V0,ε
√

2

(
2
√
2V0X

)
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Ğ2(X) = X− 1
2W√

2V0,ε
√

2

(
2
√
2V0X

)
,

where Mα,β , Wα,β denote Whittaker’s functions [15].

Here we can see clearly that the change of variable X = exp(−x) is the appropriate change of variable
to transform equation (29) to a Hypergeometric class equation (i.e. relation (30)).

Then with the same trick as above (X = exp(−x)), equation (30) is converted to the relation[
−1
2

d2

dx2
+ V (x) + ε2

]
Ψ = 0. (31)

Then from the solutions of the equation (30) we can conclude that

G1(x) = exp(−x

2
)M√

2V0,ε
√

2

(
2
√

2V0 exp(−x)
)

G2(x) = exp(−x

2
)W√

2V0,ε
√

2

(
2
√
2V0 exp(−x)

)
are two linearly independent solutions of the equation (31) which satisfy the conditions:

lim
x→+∞

G1(x) = 0 ; lim
x→−∞

G2(x) = 0

Then according to some results in [16] we know that the Green function of the equation (31), which is our
solution of the equation (29), i.e. our initial Green function, is given in the following form:

G (x, y) =

{
G2(y)G1(x)

W si y < x
G2(x)G1(y)

W
si x < y

where for equation (31) W is the Wronskian of G1, G2.
With some properties of the Whittaker functions [17], we find that

W =
2
√
2V0Γ

(
1 + 2

√−2E
)

Γ
(

1
2
+

√−2E +
√
2V0

) .
Finally the Green function takes the form

G (x, y) =
Γ

(
1
2
+
√−2E +

√
2V0

)
2
√
2V0Γ

(
1 + 2

√−2E
) exp

1
2
(x+ y) .{

Θ(x− y)W√
2V0,

√−2E

(
2
√
2V0 exp(−y)

)
M√

2V0,
√−2E

(
2
√

2V0 exp(−x)
)
+

Θ(y − x)W√
2V0,

√−2E

(
2
√
2V0 exp(−x)

)
M√

2V0,
√−2E

(
2
√
2V0 exp(−y)

)}
where Θ denotes Heaviside’s unit step function. A result was found earlier by different methods [11–14].

3. Discussion

In this work, we have added a further application, contributing to the perturbation method. This
contribution concerns for first time the calculation of the energy Green’s function of the Morse system by
the perturbation series. This approach and the used method will, without any doubt, serve to bring another
contribution to the non explored problems and we hope to stimulate further examples of applications in
important problems of physics.
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