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Abstract

In this paper a variational study of a tunnelling exciton (Frenkel exciton) coupled to an arbitrary

number of phonon modes is presented. The results of our model are presented both for weak non-

adiabatic cases and for strong cases; and we come to the conclusion that the tunnelling reduction factor,

the ground state energy of the tunnelling exciton-phonons system, and the mean number of ground state

phonons, as the functions of the exciton-phonons coupling strength, are continuous, a condition that

does not apply in cases of the tunnelling exciton-phonons models presented in the previous studies. In

comparison with the previous studies, the presented model leads to a significant decrease of the ground

state energy both of the small polaron and of the tunnelling exciton-phonons system, mainly for weak

non-adiabatic cases.
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1. Introduction

In recent years much attention has been paid to two-state systems (tunnelling systems) linearly coupled to
a boson field [1]. These systems are the fundamental models of the exciton motion, polaron motion, molecular
polarons, defects in insulators, diffusion of impurities, charged particle motion in metals, tunnelling of atoms
in glasses, spin–phonon relaxation, etc.

Up to now, the exact ground state wave functions of the two-state system linearly coupled to an arbitrary
number of phonon modes have not been yet found. Therefore, there is continual interest to find these ground
state wave functions, and of course, the analytical ground state wave functions; for, should these be found,
the solutions could give us a better physical view on a studied problem than numerical methods. Of late, a
combination of the unitary transformation and the variational principle has been used [2–6] to find out the
approximations of these ground state wave functions. In this paper this method is also applied.

If the exact eigenfunctions and eigenvalues of an original Hamiltonian can not be found, then the shape
of a unitary transformation of the original Hamiltonian can help us find a convenient form of the variational
solution for a given problem. In our ground state model of the two-state system linearly coupled to an
arbitrary number of phonon modes, the Lang-Firsov unitary transformation is applied to transform the
studied problem into a small polaron system. After this unitary transformation a variational method using
a trial ground state wave function is used. The construction of this trial ground state wave function follows
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from a physical view of a studied problem so as to explain some ground state properties of the tunnelling
exciton-phonons system.

In this paper, special attention is paid to the tunnelling reduction factor and the ground state energy
values of the tunnelling exciton-phonons system the same as in the other works dealing with these quantities.

2. The Ground State Approximation

For further considerations, we introduce the concept a two-state exciton which will describe the exciton
occupying two states represented by two orthonormal wave functions |1〉 and |2〉; these wave functions can
be called orbits of the exciton.

The two-state exciton (or tunnelling exciton) linearly coupled (“adhered“) to M phonon modes, and
tunnelling between two sites 1 and 2, is described by the Hamiltonian

H = −T [|1〉 〈2|+ |2〉 〈1|]⊗ 1B +
M∑
i=1

�ωi [|1〉 〈1|+ |2〉 〈2|]⊗ b+i bi

+
M∑

i=1
gi [|1〉 〈1| − |2〉 〈2|]⊗ (b+i + bi)

(1)

where T is the bare exciton tunnelling parameter; b+i and bi, i = 1,..., M , are creation and annihilation
boson operators for mode i (frequency ωi) of an aside-molecule which has a substantially larger mass than
the exciton and which is placed aside of site positions; gi is the coupling constant to the ith phonon mode
for the tunnelling exciton, |i〉 〈j|, i, j = 1, 2, is the projective operator from the space generated by the state
|j〉 on the space generated by the state |i〉. 1B is the unit operator on the Hilbert space Ω, which is defined
lower, and � = h/2π, where h is the Planck constant.

For further considerations, let us define the Hilbert space ℵ, in which the solution of our task will be
searched, as

ℵ = { Φ|Φ(x,Q) = α1 |1〉 (x)Ψ1 (Q) + α2 |2〉 (x)Ψ2 (Q) } ,

where x is the exciton space coordinate, α1 and α2 are real numbers and are regarded as the coefficients of
a linear combination, and Ψj ∈ Ω, j = 1, 2, where Ω is the Hilbert space consisting of all the real-valued
functions of Q that have the following properties. If Ψ ∈ Ω, then its second power has the Lebesgue integral
on the Q space, which is defined as the set of M -dimensional vectors

Q =




Q1

.

.

.

QM




with Qj ∈ (−∞,+∞), and the second powers of the functions
QjΨ(Q), Q2

jΨ(Q), ∂2

∂Q2
j
Ψ(Q), j = 1,...,M ,

have also the Lebesgue integral on the Q space. The scalar product of the elements Ψj ∈ Ω, j = 1, 2, is
defined as

〈Ψ1,Ψ2〉 =
+∞∫

−∞

· · ·
+∞∫

−∞

Ψ1(Q)Ψ2(Q)dQ1 · · ·dQM .

As usually presented in the literature, the tensor product of functions |j〉 and Ψ ∈ Ω is defined as (|j〉 ⊗ Ψ)
(x,Q) = |j〉 (x)Ψ (Q), for all values of x and Q defined above.
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If Ξ is a linear operator defined in the space Ω, i.e. Ξ (Φ) ∈ Ω, for an arbitraryΦ ∈ Ω, then the linear
operator |i〉 〈j| ⊗ Ξ is defined in the space ℵ, i, j = 1, 2, as

|i〉 〈j| ⊗ Ξ (Φ) = |i〉 〈j| ⊗ Ξ (α1 |1〉 ⊗ Ψ1 + α2 |2〉 ⊗ Ψ2)

= α1δj1 |i〉 ⊗ Ξ (Ψ1) + α2δj2 |i〉 ⊗ Ξ (Ψ2) ,

where δji is the Kronecker delta, α1 and α2 are the real numbers, Ψk ∈ Ω, k = 1, 2, and Φ = α1 |1〉 ⊗Ψ1 +
α2 |2〉 ⊗ Ψ2. From the definition of the operator |i〉 〈j| ⊗ Ξ, one obtains the expression

[ |i〉 〈j| ± |k〉 〈m|]⊗ Ξ (Φ) = |i〉 〈j| ⊗ Ξ (Φ)± |k〉 〈m| ⊗ Ξ (Φ) , i, j, k, m = 1, 2.
Sites 1 and 2 can be, for example, two equivalent minima of a potential energy of the two-state exciton

between which this exciton hops.
In the next calculations, we employ the relations �ωi ≡ ωi, i = 1, 2, . . . ,M . We define the Bloch k-states

as

|k〉 = 1√
N

2∑
n=1

ei0kn |n〉,

where N = 2, k = (2π/N)m with m = 0, 1, and i0 =
√−1. Then the Hamiltonian −T [|1〉 〈2|+ |2〉 〈1|] ⊗

1Bcan be rewritten as

−T [|1〉 〈2|+ |2〉 〈1|]⊗ 1B = −T
∑

k=0,π

cos(k) |k〉 〈k| ⊗ 1B .

The eigenenergies of this Hamiltonian have the values Ek = −T cos(k) with k = 0, π, i.e. –T and +T , and
the eigenstates (band–type solutions or free states) corresponding to these eigenenergies are

|k = 0〉 ⊗ |0〉 =
(

1√
2
|1〉 + 1√

2
|2〉

)
⊗ |0〉 ,

and |k = π〉 ⊗ |0〉 =
(
− 1√

2
|1〉+ 1√

2
|2〉

)
⊗ |0〉,

respectively; the first one is called a delocalized state and the second is called an excited state. In the
above,

|0〉 = π−M/4 exp(− 0.5Q2
1 · · · − 0.5Q2

M) = π−M/4 exp
(
−0.5

〈〈
∧
IQ,Q

〉〉)
, (2)

where
∧
I is the M ×M unit matrix. The double angular brackets denote the scalar product currently used

on the Q space.
In this paper the value of Qi, i =1, . . . ,M , represents the ith normal mode coordinate of the aside-

molecule. When using representation of the operators b+i and bi by means of the variable Qi, we obtain the
following expressions currently used also in the other works:

bi =
1√
2

(
Qi +

∂

∂Qi

)
and b+i =

1√
2

(
Qi − ∂

∂Qi

)
, i = 1, . . .,M. (3)

For a free exciton, the value of –T can be associated with the binding energy (the bare exciton inner
binding energy) between an excited molecule electron and the hole that arises from this excited electron in
a molecule valence band.

For the solution of our task, the concept of a small polaron [7] utilizing the following generalization of
the Lang-Firsov unitary operator will be applied

S = |1〉 〈1| ⊗ eA + |2〉 〈2| ⊗ e−A,
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with exp(±A) ≡ B⊗
M∏
i=1

exp(± gi

ωi
(b+i − bi)), where the sign

B⊗ denotes the tensor product of phonon operators

of the individual modes.
Applying the unitary operator S, we obtain the following unitary transformation of the Hamiltonian

H/T :

S (H/T )S+ = − (|1〉 〈2| ⊗ e2A + |2〉 〈1| ⊗ e−2A
)

(4)

+ [|1〉 〈1|+ |2〉 〈2|]⊗
M∑
i=1

ωi

T
b+i bi

+ [|1〉 〈1|+ |2〉 〈2|]⊗
M∑
i=1

(− g2
i

Tωi
1B) (5)

= HSP +Hph +HBE,

where S+ is the Hermitian conjugate of S.
Thus, the Hamiltonian (1) of the tunnelling exciton-phonons system has been transformed by the unitary

transformation S into a sum of three Hamiltonians. The first of the three is the Hamiltonian HSP =
− (|1〉 〈2| ⊗ e2A + |2〉 〈1| ⊗ e−2A

)
of the small polaron, while the second one is the Hamiltonian

Hph = [|2〉 〈2|+ |1〉 〈1|]⊗
M∑

i=1

ωi

T
b+i bi

of phonons, and the third one is the Hamiltonian

HBE = [|2〉 〈2|+ |1〉 〈1|]⊗
M∑
i=1

(
− g2

i

Tωi
1B

)

that represents a decrease of the total energy of the tunnelling exciton-phonons system due to the binding
between the exciton and all the phonons.

In our case, the small polaron is a stable object created as a consequence of the coupling between the
tunnelling exciton and the aside-molecule phonons.

From the physical point of view, the most interesting cases are those in which the values of ωj, j = 1,
. . . , M , and T are comparable (i.e. the values of T/ωj, j = 1, . . . , M , are not too much different from
the value of 1, the parameter ωj/T is sometimes called a non-adiabaticity parameter with respect to the jth

phonon mode), i.e. it’s about such cases in which the bare exciton inner binding energy determining the
stability of the exciton and the energies ωj of phonons that try to destroy the exciton stable system have
comparable values, and such cases will be also involved in a model presented in this paper. For such cases
and for the weak exciton-phonons binding (coupling), i.e. for Λj = g2

j /Tωj << 1, j = 1, . . . ,M , utilizing
the identities:

(
gj

ωj

)2

=
g2

j

Tωj
· T
ωj

, j = 1, . . .,M,

we get the result (
gj

ωj

)2

=
g2

j

Tωj
.
T

ωj
<< 1 ⇒ gj

ωj
<< 1,

which leads to the approximation

|1〉 〈2| ⊗ e2A + |2〉 〈1| ⊗ e−2A ≈ |1〉 〈2| ⊗ 1B + |2〉 〈1| ⊗ 1B .
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Regardless of the number of phonons of jth mode, the value of −Λj represents the decrease (expressed in
units of T ) of total energy of the tunnelling exciton-phonons system that is due to the “adherence“ of the
tunnelling exciton to all the phonons of the jth mode. (The value of −Λj is defined similarly in other works).

Thus, in this case, the approximation of the Hamiltonian (4) can be expresed as

S (H/T )S+ ≈ − [|1〉 〈2|+ |2〉 〈1|]⊗ 1B + [|1〉 〈1|+ |2〉 〈2|]⊗
M∑
i=1

ωi

T b+i bi

+ [|1〉 〈1|+ |2〉 〈2|]⊗
M∑

i=1

(
− g2

i

Tωi
1B

)
.

It means that, in this case, the ground state for the Hamiltonian (4) has approximately the form

1√
2
|1〉 ⊗ |0〉 + 1√

2
|2〉 ⊗ |0〉 ,

which is the ground state of the approximating operator stated a few lines above, and |0〉 is the phonon
vacuum state defined in equation (2). This ground state represents the free exciton state. Thus, in the case
of the weak exciton-phonons interaction, the ground state of the exciton-phonons system can be regarded
as nearly the free exciton state.

It is known that for strong exciton-phonons binding one gets the inequality 1 << Λj, j = 1, . . . , M . As
the operator

|1〉 〈2| ⊗ e2A + |2〉 〈1| ⊗ e−2A

is unitary, its norm is equal to 1. For proof of this statement, at first, let us prove that this operator is an
isomorphism on the Hilhert space ℵ. As an arbitrary element f ∈ ℵ has the form f(x,Q) = α1 |1〉 (x)Ψ1 (Q)+
α2 |2〉 (x)Ψ2 (Q), where the real values of α1 and α2 are the real-valued coefficients of a linear combination,
and Ψj ∈ Ω, j = 1, 2, the element

Φ(x,Q) = α1 |2〉 (x)Ψ1

(
Q+ 2

√
2 �D

)
+ α2 |1〉 (x)Ψ2

(
Q− 2

√
2 �D

)
,

with �D =




g1/ω1

.

.

.

gM/ωM


,

has the properties Φ ∈ ℵ and (|1〉 〈2| ⊗ e2A + |2〉 〈1| ⊗ e−2A) (Φ) = f , where the expression

exp(2A)Ψ(Q) = Ψ(Q − 2
√
2 �D),

for an arbitrary element Ψ ∈ Ω, has been applied.
Further, the linear operator |1〉 〈2| ⊗ e2A + |2〉 〈1| ⊗ e−2A is the Hermitian one on the space ℵ and

(|1〉 〈2| ⊗ e2A + |2〉 〈1| ⊗ e−2A)(|1〉 〈2| ⊗ e2A + |2〉 〈1| ⊗ e−2A) = 1ℵ,

where 1ℵ is the unit operator on the space ℵ. Therefore,
∥∥|1〉 〈2| ⊗ e2A + |2〉 〈1| ⊗ e−2A

∥∥ = 1 <<
M∑

j=1

Λj = Λ, (6)

where sign‖‖ denotes the norm of bounded linear operators defined on the Hilbert space ℵ on which the
following scalar product is defined:

(f, h) = α1β1

+∞∫
−∞

...

+∞∫
−∞

Ψ1 (Q)Φ1 (Q) dQ1...dQM + α2β2

+∞∫
−∞

...

+∞∫
−∞

Ψ2 (Q)Φ2 (Q) dQ1...dQM,
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where

f(x,Q) = α1 |1〉 (x)Ψ1 (Q) + α2 |2〉 (x)Ψ2 (Q) ,

h(x,Q) = β1 |1〉 (x)Φ1 (Q) + β2 |2〉 (x)Φ2 (Q) ,

And the real values of α1, β1,α2, β2 are the coefficients of the linear combination, and Ψj ,Φj ∈ Ω, j = 1, 2.
Parameter Λ represents a decrease of the total energy of the tunnelling exciton-phonons system that is

due to the coupling of the exciton to all the phonons (regardless of the number of these phonons in all the
modes).

Thus, relation (5) leads to the approximation

S (H/T)S+ ≈ [|1〉 〈1|+ |2〉 〈2|]⊗
M∑

i=1

ωi

T
b+i bi + [|1〉 〈1|+ |2〉 〈2|]⊗

M∑
i=1

(
− g2

i

Tωi
1B

)
. (7)

Equation (6) means that the ground state of the Hamiltonian S (H/T)S+ has approximately the form

1√
2
|1〉 ⊗ |0〉 + 1√

2
|2〉 ⊗ |0〉 .

Then, in both cases mentioned above, i.e. both for weak and strong exciton-phonons bindings, the ground
state of the Hamiltonian (1) has approximately the form

S+

(
1√
2
|1〉 ⊗ |0〉+ 1√

2
|2〉 ⊗ |0〉

)
=

1√
2
|1〉 ⊗ eA |0〉+ 1√

2
|2〉 ⊗ e−A |0〉 , (8)

where exp(±A) ≡ B⊗
M∏

i=1

exp
(
± gi

ωi
(b+i − bi)

)
.

As the case of the weak exciton-phonons binding is characterized by the inequalities 0 ≤ gi/ωi << 1, i
= 1, . . . ,M , which lead to the approximation S+ ≈ 1ℵ, we come to the conclusion that, in this case, the
ground state of Hamiltonian (1) has approximately the form

1√
2
|1〉 ⊗ |0〉 + 1√

2
|2〉 ⊗ |0〉 .

In the case of strong exciton-phonons binding, expression (7) represents a linear combination of two displaced
harmonic oscillators from which the first one is displaced in one direction when the tunnelling exciton is in
the state |1〉 and the second one is displaced in the opposite direction when the tunnelling exciton is in the
state |2〉.

A so-called intermediate region of the parameters T ,gj,ωj, j = 1, . . . ,M , is such one in which the values
of Λand

∥∥|1〉 〈2| ⊗ e2A + |2〉 〈1| ⊗ e−2A
∥∥ = 1 are comparable, and it is this region has been studied in the

literature the most intensively.
As stated above, of late, a variational approach proves a convenient method for finding the approximations

of the ground state wave functions. We shall also apply the variational approach to find the analytical wave
functions that approximate the ground state wave functions of the Hamiltonian S (H/T)S+for the weak,
intermediate, and strong exciton-phonon interactions.

First of all, let us notice that the operators S (H/T)S+ and � = [|1〉 〈2|+ |2〉 〈1|]⊗G, where

G =
B⊗

M∏
k=1

Gk, Gk = ei0πb+
k bk , G2

k = 1B,k, k = 1,...,M ,

where 1B,k is the unit operator on the linear space generated by the wave functions of the kth phonon
mode, fulfil commutation relation [

S (H/T)S+ ,�] = 0. (9)
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Using expressions (3), Hamiltonian (4) can be rewritten as

S (H/T) S+ = −




|1〉 〈2| ⊗
(

B⊗
M∏

i=1

exp
(
−2

√
2 gi

ωi

∂
∂Qi

))

+ |2〉 〈1| ⊗
(

B⊗
M∏

i=1

exp
(
2
√
2 gi

ωi

∂
∂Qi

))



+ [|1〉 〈1|+ |2〉 〈2|]⊗
M∑
i=1

[
ωi

T

1
2

(
Q2

i −
∂2

∂Q2
i

− 1B

)]
(10)

+[|1〉 〈1|+ |2〉 〈2|]⊗
M∑
i=1

[−(g2
i /Tωi)1B

]
.

For any real-valued phonon wave function Φph ∈ Ω for which

+∞∫
−∞

· · ·
+∞∫

−∞

(Φph(Q))2dQ1 · · ·dQM = 1,

and for Ψ̃(x,Q) =
(

1√
2
(1e⊗B +�) |1〉 ⊗Φph

)
(x,Q) = 1√

2
|1〉 (x)Φph (Q) + 1√

2
|2〉 (x)Φph (−Q),

where 1e⊗B = ([|1〉 〈1|+ |2〉 〈2|]) ⊗ 1B , we obtain the expression

�Ψ̃(x,Q) = �
(

1√
2
(1e⊗B + �) |1〉 ⊗Φph

)
(x,Q) =

(
1√
2

(�+ �2
) |1〉 ⊗ Φph

)
(x,Q)

=
(

1√
2
(� + 1e⊗B)

)(
|1〉 ⊗ Φph

)
(x,Q)

=
1√
2
�
(
|1〉 ⊗ Φph

)
(x,Q) +

1√
2
1e⊗B

(
|1〉 ⊗ Φph

)
(x,Q)

=
1√
2

(
[ |1〉 〈2|+ |2〉 〈1| ] |1〉 ⊗GΦph

)
(x,Q) +

1√
2

(
[ |1〉 〈1|+ |2〉 〈2| ] |1〉 ⊗ 1BΦph

)
(x,Q)

=
1√
2
|2〉 (x)GΦph (Q) +

1√
2
|1〉 (x)Φph (Q)

=
1√
2
|1〉 (x)Φph (Q) +

1√
2
|2〉 (x)Φph (−Q) = Ψ̃(x,Q). (11)

In the equation (10) we have used the relations

G2 =
B⊗

M∏
k=1

G2
k =

B⊗
M∏

k=1

1B,k = 1B, and GΦph (Q) = Φph(−Q),

and

�1e⊗B = ([|1〉 〈2|+ |2〉 〈1|]) ⊗G (|1〉 〈1|+ |2〉 〈2|) ⊗ 1B

= ([|1〉 〈2|+ |2〉 〈1|]) (|1〉 〈1|+ |2〉 〈2|)⊗G1B = ([|1〉 〈2|+ |2〉 〈1|])⊗G = �,
�2 = ([|1〉 〈2|+ |2〉 〈1|]) ⊗G (|1〉 〈2|+ |2〉 〈1|) ⊗G = ([|1〉 〈2|+ |2〉 〈1|]) (|1〉 〈2|+ |2〉 〈1|)⊗G2

= ([|1〉 〈1|+ |2〉 〈2|]) ⊗ 1B = 1e⊗B,

(see [7]; the operator G is often called a reflection operator on the phonon space). Thus, expression (10)
gives

�Ψ̃(x,Q) = Ψ̃(x,Q),
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or in other words, wave function Ψ̃ (x,Q) is an eigenfunction of the operator �. Relations (8), (9) and (10)
lead to the conclusion that the wave function (10) can be regarded as an eigenfunction of Hamiltonian (9).
The main aim of our study is to find the phonon wave function Φph (Q) so as to be reached the minimum

of the energy functional (Ψ̃, S(H/T )S+Ψ̃), where Ψ̃ is defined by (10) and the brackets denote the scalar
product on the space ℵ. We shall construct this phonon wave function Φph (Q) utilizing some physical
conclusions following from a physical view on a studied problem.

The shape of wave function (10) resembles a linear combination of two orthogonal localized states
|1〉 (x)Φph (Q) and |2〉 (x)Φph (−Q), where Φph (Q) and Φph (−Q) are the states of the aside-molecule
provided that the tunnelling exciton is in state |1〉 or |2〉, respectively. For the construction of the term
|1〉 (x)Φph (Q), first of all let us introduce the concept of “a zero-equilibrium position of the aside-molecule.”
The aside-molecule oscillates around the zero-equilibrium position as long until the coupling between the tun-
nelling exciton and the aside-molecule phonons starts to have an effect. Further, let us imagine that the
tunnelling exciton is for a while in the state |1〉 and simultaneously is also in site 1 or 2. Then the aside-
molecule is shifted from the zero-equilibrium position (which has in the Q space a coordinate Q = 0) to
a new equilibrium position which has in the Q space a coordinate Q = α(1)or Q = α(2), respectively, where

α(k) =




α
(k)
1

.

.

.

α
(k)
M


 ,

α
(k)
i , i = 1,2,...,M and k = 1,2, are the real-valued variational parameters independent on all the normal

mode coordinates Qi, i = 1,2,...,M . The simultaneous occurrence of the tunnelling exciton both in state
|1〉 and in site 1 or 2 results in the existence of two phonon fields corresponding to two shifts of the aside-
molecule. It is obvious to assume that both these phonon fields are similar to two ground state fields of two
displaced linear quantum harmonic oscillators. This assumed similarity allows us to presume that the wave
functions of these two phonon fields have the form

D(α(k))Ψvac(B,Q) = Ψvac(B,Q+ α(k)), (12)

where

D(α(k)) =
B⊗

M∏
i=1

exp((α(k)
i /

√
2)(bi − b+i )) =

B⊗
M∏

i=1

exp(α(k)
i ∂/∂Qi), k = 1, 2,

are the displacement operators, and

Ψvac(B,Q) = 4

√
2M |B|
πM

exp(−〈〈BQ,Q〉〉), (13)

where |B| is a determinant of the M ×Msymmetrical matrix B which has the elements bij regarded as the
real-valued variational parameters that are independent of Q, i, j = 1,...,M , and are introduced in order to
embrace the correlation effect between the ith and jth phonon modes into our model. On account of the

equality
+∞∫
−∞

· · ·
+∞∫
−∞

(Ψvac (B,Q))2 dQ1 · · ·dQM = 1, the matrix B must fulfil the condition 〈〈BQ,Q〉〉 > 0

for an arbitrary non-zero vector Q.
For the two-mode case, the vacuum state in (12), deduced from the results of studies in [6, 8, 9], has

been utilized in [10] for the approximation of the ground state wave functions and energies of the linear
Jahn-Teller system.

For the one-mode case, i.e. for M = 1, the definition of the vacuum state (12) coincides with the
definition of the squeezed vacuum state that has been used in many works [4, 5, 6, 8]. Namely, in this case,
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the squeezing of the vacuum state (12) is characterized by an inequality |b11| < 2−1 which says the maximum
of function (12), as a function of Q1, is reached at the point Q1 = 0 and is not larger than the maximum of
the function |0〉 = π−1/4 exp(−0.5Q2

1), as a function of Q1. The generalization of these facts for an arbitrary
whole number M gives us, for the squeezing of the vacuum state (12), the condition

|B| < 2−M ,

which leads to the fact that the maximum of the function |0〉 is not smaller than the maximum of function
(12), as it is in the single-mode case discussed above.

Following from one of the fundamental principles of quantum theory, in which a linear combination of
possible states of the phonon field is also a possible state for the phonon field, one can construct the phonon
ground state wave function Φph (Q) from the linear combination of the two states defined in (11) as

Φph(Q) = C̃0

2∑
k=1

εkD(α(k))Ψvac(B,Q) = C̃0

2∑
k=1

εkΨvac(B,Q+ α(k))

= C̃

2∑
k=1

εk exp(−
〈〈

B(Q+ α(k)), (Q+ α(k))
〉〉

) ≡ Ψph(α,B, ε, Q),

where

C̃ = 4

√
2M |B|
πM

(
2∑

k=1

2∑
l=1

εkεlF (α,B, k, l))−
1
2 .

Here,

F (α,B, k, l) = exp(−0.5
M∑

i=1

M∑
j=1

bij(α
(k)
i − α

(l)
i )(α(k)

j − α
(l)
j )),

ε =
(

ε1
ε2

)
,

where εk, k = 1, 2, are the real-valued numbers regarded as the variational parameters (coefficients of the
linear combination, independent of Q), α =

(
α(1), α(2)

)
is a M × 2 matrix, and

C̃0
4

√
2M |B|
πM

= C̃

following from the normalizing condition

+∞∫
−∞

· · ·
+∞∫

−∞
(Ψph(α,B, ε, Q))2dQ1 · · ·dQM = 1,

but has no influence on the solution of our task.
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As

D(α(k))Ψvac(B,−Q) = Ψvac(B,−Q+ α(k))

= 4

√
2M |B|
πM

exp
(
−
〈〈

B(−Q + α(k)), (−Q+ α(k))
〉〉)

= 4

√
2M |B|
πM

exp


−

M∑
i=1

M∑
j=1

bij(−Qi + α
(k)
i )(−Qj + α

(k)
j )




= 4

√
2M |B|
πM

exp


−

M∑
i=1

M∑
j=1

bij(Qi − α
(k)
i )(Qj − α

(k)
j )




= D(−α(k))Ψvac(B,Q),

we come to the result

Φph(−Q) = C̃

2∑
k=1

εkD(α(k))Ψvac(B,−Q) = C̃

2∑
k=1

εkΨvac(B,Q− α(k)) ≡ Ψph(−α,B, ε, Q).

Then, expression (10) can be written as

Ψ̃(x,Q) =
1√
2
|1〉 (x)Ψph(α,B, ε, Q) +

1√
2
|2〉 (x)Ψph(−α,B, ε, Q). (14)

The expectation value of (9) in the trial ground state wave function (13) amounts to

�
T

= (Ψ̃, S (H/T )S+Ψ̃) = −DW (α,B, ε) −
M∑

i=1

Λi

+
M∑
i=1

ωi

2T

(
1
4
(B−1)ii + bii − 1

)

+

(
2∑

k=1

2∑
l=1

εkεlF (α,B, k, l)

)−1

× (15)

×
2∑

k=1

2∑
l=1

M∑
i=1

εkεl
ωi

2T
F (α,B, k, l)


1
4
(α(k)

i )2 +
1
4
(α(l)

i )2 −

 M∑

j=1

bij(α
(k)
j − α

(l)
j )




2

 ,

where

DW (α,B, ε) = F 0(α,B, ε)(
2∑

k=1

2∑
l=1

εkεlF (α,B, k, l))−1,

with

F0(α,B, ε) =
2X

k=1

2X
l=1

εkεl exp

2
4−0.5

MX
i=1

MX
j=1

bij

 
−2
p

2Λi

s
T

ωi
− α

(k)
i − α

(l)
i

! 
−2
p

2Λj

s
T

ωj
− α

(k)
j − α

(l)
j

!35,

the values of F (α,B, k, l), k, l = 1, 2, defined above, Λi =
g2

i

Tωi
, i = 1, . . . ,M , are stated above, and (B−1)ii,

i = 1, . . . ,M , is the ith diagonal element of the matrix B−1 .
Thus, �

T
= �

T

(
α,B, ε,Λ1,Λ2, ...,ΛM, ω1

T
, ω2

T
, ..., ωM

T

)
, and provided that ωi

T
and Λi, i = 1, . . . ,M ,

are constants, we search for the stable minimum of the energy functional (14), as the function of the
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variable quantities bij, α
(k)
i , εk, with i, j = 1,...,M and k = 1, 2, that is reached at the optimum val-

ues of bij, α
(k)
i , εk i.e. b

(m)
ij , α

(k)(m)
i , ε

(m)
k , i, j = 1,...,M and k = 1, 2, with respect to the condition

|B| ≤ 2−M . Without any restrictions concerning the results of our task, we suppose ε
(m)
1 = 1. The pa-

rameters Λ1,Λ2, . . . ,ΛM , ω1/T, ω2/T, . . . , ωM/T can be called material parameters.
Regarding the system described by Hamiltonian (1), the ground state model taking into account the

correlation effect among all the phonon modes into consideration has not been yet presented in any literature.
It is evident that the ground state wave function Ψmof the Hamiltonian H has the form

Ψm = S+Ψ̃m(x,Q)

=
1√
2
|1〉 (x)Ψph(αm + �A,Bm, εm, Q) +

1√
2
|2〉 (x)Ψph(−αm − �A,Bm, εm, Q), (16)

where Ψ̃m is obtained by substituting the values of αm, Bm, εmfor the values of α,B, ε in the definition of
the function Ψ̃ given by the expression (13),

Ψph(±αm ± �A,Bm, εm, Q) = C̃m

2∑
k=1

ε
(m)
k exp

(
−
〈〈

B(Q ± α(k)(m) ± �Ak), (Q± α(k)(m) ± �Ak)
〉〉)

, (17)

where the value of C̃mis obtained by substituting the values of αm, Bm for the values of α,B in the expression
defining the value of C̃ stated above, the M × 2 matrix αm is defined as

αm =
(
α(1)(m), α(2)(m)

)
; α(k)(m) =




α
(k)(m)
1
...

α
(k)(m)
M


 ,

k = 1, 2, the M ×M matrix Bmand the vector εm have the forms

Bm =




b
(m)
11 · · · b

(m)
1M

...
...

b
(m)
M1 · · · b

(m)
MM


 , εm =

(
1

ε
(m)
2

)
,

the M × 2 matrix �A has the elements
(
�A
)

ij
=

√
2gi/ωi, i = 1, . . . ,M and j = 1, 2, and �A =

(
�A1,

⇀

A2

)
,

where �A1 and �A2 are the first and the second column of the matrix �A, respectively, whereupon �A1 = �A2.
The mean value of the ground state energy (in units of T ) of the small polaron, which has the Hamiltonian

HSP, is equal to the expectation value of the Hamiltonian HSP in the ground state Ψ̃m of the Hamiltonian
(4), and amounts to (

Ψ̃m, HSP Ψ̃m

)
= −DW (αm, Bm, εm) ≡ −DWm < 0,

where

DW (αm, Bm, εm) =

+∞∫
−∞

· · ·
+∞∫

−∞

Ψph

(
αm + �A,Bm, εm, Q

)
Ψph

(
−αm − �A,Bm, εm,Q

)
dQ1 · · ·dQM .

This reality follows from one of the principles of quantum mechanics that says: if the quantum system wave
function in the y-representation is known (denoted it as f(y), where y is the space coordinate) then the

expectation value (sometimes called as the mean value)
〈

�

Θ
〉
of the physical quantity of the given quantum

system, which is represented by the operator
�

Θ,has the form〈
�

Θ
〉
=

∫
f∗ (y)

�

Θf (y) dy,
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where f∗ is a conjugate of the wave function f . In our case we have y ≡ Q, f ≡ Ψ̃m, and
�

Θ ≡ HSP.

The value of
(
Ψ̃m, HSP Ψ̃m

)
will be in the further text called the ground state energy (in units of T ) of

the small polaron.
The value of −DWmT determines the inner binding energy (this inner binding energy has origin in the

inner binding energy of the bare exciton that is equal to –T ) of the small polaron. It is obvious that more
the negative value of −DWmT , more stable is the small polaron.

Sometimes the value of DWm is called a tunnelling reduction factor and it is obtained by substituting
the optimum values of αm, Bm, εmfor the values of α,B, ε in the expression DW (α,B, ε) stated in the
description of expression (14). It is obvious that the value of DWm is dependent on the concrete values of
Λ1,Λ2 . . . ,ΛM , ω1/T , ω2/T, . . . , ωM/T .

3. Numerical Results and Conclusions

Up to now, the only published work dealing with the ground state of Hamiltonian (1) with value of
M greater than 1, namely M = 2, is Lo and Sollie in [6]. We compare the results of our model with the
numerical results presented in [6], namely for the case g1 = g2 = g, ω1 = ω2 = ω, and M = 2. For the
given values of Λi, i = 1, . . . ,M , the energy function (14), considered only as the function of T and ωi,
with i = 1, . . . ,M , is dependent only on the quotients ωi/T ≡ 1/∆i. Parameters ∆i are often called the
non-adiabatic parameters. Therefore, in the case that ω1 = ω2 = ω, when using the parameter 1/∆ ≡ ω/T ,
and defining the functional E/∆ by means of a modification of the energy functional (14), namely as follows
E/∆ = �/T = �/(ω∆), we can compare the results of our model with the analogous descriptions from [6]
according to a degree of non-adiabaticity given by the value of ∆. When considering the case g1 = g2 = g,
ω1 = ω2 = ω, andM = 2, calling this a symmetrical two-mode case, we obtain the expressions ∆1 = ∆2 = ∆
and Λ1 = Λ2 = g2

∆ω . Regarding the values of ∆,Λ1,Λ2 as constants, we search for the stable minimum of the
functional E/∆ in a region of parameters α,B, ε fulfilling the conditions |B| ≤ 2−2and ε1 = 1, i.e. in a region
corresponding to a linear combination of the displacements of the vacuum states (12) that are regarded as
a generalization of squeezed vacuum states [4–8]. In this case the stable minimum Em/∆ of the functional
E/∆ is defined as

Em

∆
≡ Em

∆

(
Λ1,Λ2,

1
∆1

,
1
∆2

)
≡ min

α,B,ε

E

∆

(
α,B, ε,Λ1,Λ2,

1
∆1

,
1
∆2

)
,

in the region |B| ≤ 2−2,ε1 = 1, Λ1 = Λ2, ∆1 = ∆2 = ∆.
The optimum values of αm, Bm, εmin which this minimum is reached will be the supporting points for

the conclusions following from our model.
We now present the numerical results of our model for two typical values of the non-adiabatic parameter

∆, namely for the weak non-adiabatic case we have chosen ∆ = 10 and for the strong non-adiabatic case
∆ = 0.1, whereupon the parameters g and ω are regarded as the same for both cases. In this case, Λ =
Λ1 + Λ2 = 2 g2

∆ω , i.e. Λis a function of g, ∆, and ω, and between the value of Λfor ∆ = 10 being denoted
as Λ10 and the value of Λ for ∆ = 0.1 being denoted as Λ0.1 one can obtain the following relation Λ10 =
2 g2

10ω = 2 g2

0.1ω0.01 = 0.01Λ0.1.
Let us verify the correctness of our assumption concerning the approximation of two phonon fields that

have arisen as a result of the interaction between the tunnelling exciton and the aside-molecule phonons,
provided that the tunnelling exciton is in the state |1〉 and simultaneously also in site 1 or 2. The correctness
of this assumption can be verified by the results shown in Figure 1, where the elements b(m)

ij of the matrix
Bm , i, j = 1, 2, are presented for the weak, intermediate and strong exciton-phonons binding parameters Λ
for∆ = 10, and ∆ = 0.1. It is evident that the conditions g1 = g2 = g, ω1 = ω2 = ω, and M = 2 lead to the
equalities b(m)

11 = b
(m)
22 and b

(m)
12 = b

(m)
21 .
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Figure 1. The optimum values of b
(m)
11 and b

(m)
12 as the functions of Λ = Λ1+Λ2 in the case that ∆ = 0.1,and ∆ = 10.

As Figure 1 shows, for sufficiently small and also sufficiently large values of Λ, in comparison with the
number 1, the optimum values of b(m)

11 are practically equal to 0.5, and the greatest deviation from 0.5 is only
for the weak non-adiabatic case with the intermediate values of Λ, i.e. with the values of Λcomparable with
the number 1. But, this deviation is negligible in comparison with 0.5. The values of b(m)

12 are practically
equal to zero for both studied cases (i.e. for ∆ = 10 and ∆ = 0.1), only for the intermediate values of Λthese
ones have a slight deviation from the zero, namely only for the weak non-adiabatic case.

Thus, from the magnitude of the values of b(m)
11 and b(m)

12 , we can state that the vacuum state Ψvac (Bm, Q)
(see also (12)) differs only slightly from the vacuum state |0〉 (Q) (see the equation (2)) both for weak and
for strong non-adiabatic cases in all the region of the parameters for Λ. These considerations lead to the
following approximations (see expressions (11) and (12):

D(α(k)
m )Ψvac(Bm, Q) ≈ |0〉

(
Q+ α(k)

m

)
, k = 1, 2 (18)

for all the values of Q and Λ, and both for weak and for strong non-adiabatic cases.
As the states |0〉

(
Q+ α

(k)
m

)
, k = 1, 2, are the ground states of two shifted linear quantum harmonic

oscillators, the approximations (17) prove our assumption concerning the approximations of two phonon
fields mentioned above by means of ground state wave functions of two shifted linear quantum harmonic
oscillators.

Still, there is a certain controversy whether the quantities the ground state energy and the tunnelling
reduction factor, as the functions of the parameter Λ have any sharp change or even a discontinuous jump
at some critical values of Λ. This question is studied further.

Let us compare the values of DWm presented in Table 1 for ∆ = 10 and ∆ = 0.1. From the values shown
in Table 1 one can verify the reality that the tunnelling reduction factor of the tunnelling small polaron
for the case ∆ = 10 is greater than for the case ∆ = 0.1, whereupon the values of g and ω are considered
to be the same for both these cases. It can be proved as follows. When choosing any value of Λ ≡ Λ0.1,
for example Λ0.1 = 5, then we can find its corresponding value of DWm in Table 1, for this example it is
DWm = 0.520. The value of DWm corresponding to the case ∆ = 10 is this one that corresponds to the
value of Λ ≡ Λ10 = 0.01Λ0.1 = 0.01× 5 = 0.05. For the value of Λ10 = 0.05, as Table 1 shows, the value of
DWm is 0.9994, what is the value greater than 0.520. Thus, we can state that the tunnelling reduction factor
DWm , considered only as a function of ∆, increases. What is not valid in the case of the model presented in
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[6] for the symmetrical two-mode case. Here, this model gives zero values for the tunnelling reduction factor
for sufficiently large values of Λ ≡ Λ10, namely for Λ ≡ Λ10 > 1.75; at Λ ≡ Λ10 ≈ 1.75 there is a sudden
jump of this factor to zero.

When introducing v
(m)
k = �Ak + α(k)(m), k = 1, 2,

〈〈
Bmν

(m)
k , ν

(m)
k

〉〉
≡

∥∥∥v(m)
k

∥∥∥2

, k = 1, 2, and v
(m)
1 =

−cv(m)
2 for some positive constant c generally dependent on the value of Λ (this condition follows from a

physical view on the studied problem and is also fully supported by our numerical efforts and not only for
the symmetrical two-mode cases), one can rewrite the tunnelling reduction factor DWmas

DWm =
exp

(
−2

∥∥∥v(m)
1

∥∥∥2
)
+

(
ε
(m)
2

)2

exp
(
−2

∥∥∥v(m)
2

∥∥∥2
)
+ 2ε(m)

2 exp
(
−0.5

(∥∥∥v(m)
1

∥∥∥−
∥∥∥v(m)

2

∥∥∥)2
)

1 +
(
ε
(m)
2

)2

+ 2ε(m)
2 exp

(
−0.5

(∥∥∥v(m)
1

∥∥∥ +
∥∥∥v(m)

2

∥∥∥)2
) . (19)

In our symmetrical two-mode case, with ∆ = 0.1, the optimum values in which the minima of functional (14)
are reached can be characterized as follow. The magnitudes of α(2)(m)

1 = α
(2)(m)
2 are from a few hundredths

(for the values of Λcorresponding to weak exciton-phonons bindings) to one tenth (for the rest values of Λ),
and the optimum values of ε(m)

2 are practically equal to zero. When inserting these values in (18), the values
of DWmcan be expressed by the approximation

DWm
∼= exp

(
−2

〈〈
Bm

�A1, �A1

〉〉)
∼= exp

(
−
(
2Λ1

T

ω
+ 2Λ2

T

ω

))
= exp (−2∆Λ)

= exp
(
−2

( g
ω

)2
)
,

because b
(m)
11 = b

(m)
22

∼= 0.5, b(m)
12 = b

(m)
21

∼= 0 for all the values of Λ(see Figure 1). It means that, in our
studied symmetrical two-mode case with ∆ = 0.1, the tunnelling reduction factor is practically independent
of T .

If ∆ = 10, the numerical results show that larger the value of Λ = (1/∆ω) (g2
1 + g2

2), less the difference
between norms

∥∥∥v(m)
1

∥∥∥ and
∥∥∥v(m)

2

∥∥∥; and as it has been proved by our numerical efforts this statement is
valid not only for the symmetrical two-mode case (i.e. for the case g1 = g2) but also for a non–symmetrical
two-mode case (i.e. for the case g1 �= g2). For small values of Λ, the ground state phonon wave functions
Ψph(αm + �A,Bm, εm, Q) and Ψph(−αm − �A,Bm, εm, Q) (see expression (15)) are practically equal and
symmetrical with respect to the origin of the Q space (see Figure 2).
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Figure 2. The shape of the ground state phonon wave function Ψph(αm+ �A, Bm, εm, Q) in the case that Λ1 = Λ2 =

1.0, and ∆ = 10.
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The relation ε
(m)
2

∼= 1 is valid only for the values of Λ from the zero to the intermediate region, and the
value of ε(m)

2 , as the function of Λ, increases.
From the data of Table 1, one can state some essential conclusions concerning the ground state properties

of the symmetrical two-mode case. These conclusions are presented below.

Table 1. Comparison of the optimum values of −Em/∆, DWm, and Nm, for ∆ = 0.1 and 10, presented in Reference

[6] and in our work.

Λ 0.05 0.2 0.4 0.6 0.8 1.0 1.2 1.3 1.5 1.7 3.0 5.0 Notes

−Em/10 1.002 1.011 1.025 1.048 1.094 1.164 1.254 1.306 1.421 1.550 3 5 Ref.[6]

−Em/10 1.026 1.102 1.205 1.309 1.413 1.518 1.627 1.693 1.839 1.999 3.168 5.101 Ours

−Em/0.1 1.042 1.167 1.335 1.504 1.674 1.845 2.016 2.102 2.275 2.448 3.594 5.410 Ref.[6]

−Em/0.1 1.043 1.172 1.344 1.516 1.690 1.863 2.038 2.125 2.300 2.475 3.628 5.442 Ours

DWm,∆ = 10 0.998 0.989 0.968 0.915 0.816 0.713 0.613 0.563 0.460 0.338 0 0 Ref.[6]

DWm,∆ = 10 0.999 0.997 0.994 0.989 0.983 0.971 0.866 0.788 0.680 0.598 0.336 0.201 Ours

DWm,∆ = 0.1 0.993 0.972 0.945 0.919 0.893 0.867 0.842 0.829 0.805 0.781 0.637 0.453 Ref.[6]

DWm,∆ = 0.1 0.995 0.980 0.960 0.939 0.919 0.898 0.878 0.868 0.848 0.828 0.700 0.520 Ours

Nm,∆ = 10 0.452 1.782 3.437 4.667 5.224 5.491 5.585 5.571 5.397 4.885 0 0 Ref.[6]

Nm,∆ = 10 0.238 0.948 1.886 2.807 3.699 4.527 4.891 3.955 3.403 2.992 1.681 1.005 Ours

103Nm, ∆ = 0.1 0.137 0.533 1.022 1.469 1.876 2.246 2.581 2.736 3.020 3.274 4.281 4.311 Ref.[6]

103Nm, ∆ = 0.1 0.200 0.790 1.532 2.237 2.886 3.490 4.050 4.310 4.810 5.260 7.271 7.760 Ours
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Figure 3. The shape of the ground state phonon wave function Ψph(αm+ �A, Bm, εm, Q) in the case that Λ1 = Λ2 =

1.5, and ∆ = 10.

We look now at the mean number of phonons Nm in the ground state of Hamiltonian (4) for the sym-
metrical two-mode case. This can be directly derived from expression (4) as

Em +∆DWm +∆Λ =
2∑

i=1

< Ψ̃m, b
+
i biΨ̃m > ≡ Nm,

where all the expressions of this equation have been defined above.
Table 2 shows values of v(m)

1 , v(m)
2 , and ε

(m)
2 in some typical cases of parameter Λ, namely for the weak,

intermediate, and strong exciton-phonons bindings for the symmetrical two-mode case, with ∆ = 10. The
shapes of the ground state phonon wave functions Ψph(αm + �A,Bm, εm, Q), corresponding to the optimum

values of v(m)
1 , v(m)

2 , and ε
(m)
2 for Λ= 1.0 and 1.5, are shown in Figures 2 and 3, respectively.
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Table 2. The first and second elements v
(m)
1,1 and v

(m)
1,2 , v

(m)
2,1 and v

(m)
2,2 of the vectors v

(m)
1 and v

(m)
2 , respectively, and

the values of the parameter ε
(m)
2 for the symmetrical two-mode case with Λ= 0.1, 0.3, 0.5, 1.0, 1.2, 1.4, 1.5, 2.5, 5,

and ∆ = 10.

Λ v
(m)
1,1 = v

(m)
1,2 v

(m)
2,1 = v

(m)
2,2 ε

(m)
2

0.1 0.1308 −0.1851 1.0332
0.3 0.2481 −0.3301 1.0620
0.5 0.3443 −0.4500 1.0998
1.0 0.6459 −0.7948 1.2527
1.2 1.5156 −1.6951 1.6906
1.4 2.3914 −2.5515 2.2703
1.5 2.6862 −2.8367 2.5158
2.5 4.4675 −4.5730 4.7088
5.0 6.8549 −6.9267 9.8222

Consider the case with ∆ = 10. As Table 1 shows for this case, both for our model and for the model
presented in [6], the mean number of ground state phonons Nm (or the mean value of the ground state
energy of the phonon field being equal to �ωNm) is greatest in the intermediate region, leading to the
following conclusions. Although the size of the intermediate region is relatively small, namely this region is
represented by the values of Λ that are comparable with 1, the mean number of phonons that couple with
the exciton is more than two times greater than for other parameters of Λ. More stable the small polaron
(i.e. more negative the value of −DWm), larger is the free path of the polaron, i.e. larger the mobility of
this small polaron (or, larger is the lifetime of such a polaron), because a larger binding energy between
an excited molecule electron and a molecule valence band hole causes a larger resistance of the exciton
both against the collisions with phonons, and against the exciton-phonon binding that try to destroy the
exciton-stable system. As the value of Λ is practically constant in the intermediate region, we can state that
in this region small polaron mobility is influenced more by exciton scatterings (collisions), with an increased
number of phonons, than by the magnitude of coupling between the exciton and all the phonons. Therefore,
the mobility of the small polaron rapidly decreases in this region as a consequence of an enlarged number
of phonons (see in Table 1 the values of DWmwith ∆ = 10 for the intermediate parameters of Λ). For
parameters of Λ larger than the intermediate values, the small polaron mobility is, in a predominant extent,
influenced by the magnitude of the coupling between the exciton and phonons, because in this region both
the mean number of phonons and the small polaron mobility, as a functions of Λ, decrease (see in Table 1
the values of DWmfor small and large values of Λ). The reality that, in the region of small parameters, the
mean number of phonons is also relatively great, and yet the small polaron mobility is approximately equal
to 1, can be explained as a consequence of the weak exciton binding with these phonons.

The small polaron mobility, expressed by DWm, is greater in our model than in [6], and is caused by a
smaller mean number of the ground state phonons Nm that collide with the excitons and so decrease the
mobility of the small polaron (a comparison of value from the present work with those reported in [6] is
shown in Table 1). As our numerical results show, the mean number of phonons is equal to zero for the
model in [6] if Λ > 1.75. However, the condition Nm = 0 contradicts the condition Λ > 0, because the
value −Λ is the energy decrease (expressed in units of T ) which is caused by the coupling of the exciton to
all the phonons; but if the system has no phonons, the coupling between the exciton and phonons in this
system doesn’t exist, it means that the energy decrease caused by the coupling is none, that is −Λ = 0,
contradicting the relation Λ > 1.75. Thus, in the case of the model in [6] the implication Λ > 0 ⇒ Nm > 0
is not fulfilled.

For the case with ∆ = 0.1, the effect of a rapid decrease of the small polaron mobility connected with
an increasing number of phonons has not arisen because, in this case, the mean number of the ground state
phonons is practically equal to zero (but not a fully zero number) for all the values of Λ; and thus, the small
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polaron mobility can not be in a predominant extent influenced only by the number of collisions with the
phonons in any region of the parameters Λ.

Comparing the ground state energies of both models, we shall use the reality that the non–dimensional
ground state energies Em of the tunnelling exciton-phonons system is in the symmetrical two-mode case
composed of three terms

Em = −DWm∆− Λ∆+Nm.

Because, for given values of Λ and ∆, the value of Nm, representing the mean number of ground state
phonons and also the value of −DWm∆, representing the ground state energy of the small polaron, are in
our model lower than these ones in the model presented in [6], and simultaneously these both quantities as
the functions of Λ are in our model continuous (i.e. there is no jump of these quantities to zero values),
the ground state energy of the tunnelling exciton-phonons system is also continuous as a function of Λ and
simultaneously is lower than in [6]. From the conclusions presented above, we can state that our model give
a relatively good picture of the tunnelling exciton-phonons system up to now not being presented in any
literature.
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