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Abstract

Longitudinal form factors of the low-lying, T = 0, particle-hole states of 16O, 12C and 40Ca are studied

in the framework of Random Phase Approximation RPA. The basis of single particle states is considered

to include 0s, 0p, 1s-0d and 0f-1p. The Hamiltonion is diagonalized in the presence of Michigan three-

rang Yakawa (M3Y) interaction and compared with our previous results depend on Modified Surface

Delta Interaction MSDI interaction. Admixture of higher configuration up to 2p-1f is considered for the

ground state. Effective charges are used to account for the core polarization effect. Comparisons are

made to experimental data where available and the theoretical significance of the calculation and its

results is discussed.

Key Words: Longitudinal Form Factors, Random Phase Approximation (RPA), Collective Model, and

M3Y.

1. Introduction

The interaction of the electron with the charge distribution of the nucleus gives rise to the longitudinal
or coulomb scattering. The nuclear size may be taken into account by multiplying the Mott’s cross section
by a fraction depending on the charge distribution in the nucleus, and this fraction is called longitudinal
form factor [1]. The models of nuclear structure can be tested by comparing the calculated and measured
longitudinal form factors. In this paper we study the isoscalar transitions in 16O, 12C and 40Ca these
transitions include states Jπ (Ex (MeV)): 1− (7.12) and 3− (6.13) in 16O, 2+ (4.44) in 12C and 5− (4.48)
in 40Ca. In the shell model calculation, even-even nuclei are assumed to form closed shells, and excitations
from these states closed shell are considered to describe the excited states. According to Random Phase
Approximation RPA, the ground state as well as the excited states are treated on the same footing, and all
possible configurations are constructed by removing a particle from the closed shells, and promoting it to
higher shells leaving a hole state within the closed shells [2]. The ground state and the excited collective
oscillations can be described as a linear combination of particle-hole states.
The basis of single particle states is consider to include 0s, 0p, 1s-0d and 0f-1p, the Hamiltonion is

diagonalized in this space in the presence of Michigan three-rang Yakawa (M3Y) interaction compared with
our previous results depend on Modified Surface Delta Interaction (MSDI) interaction. To add more degree
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of collectivity, an admixture of higher orbits up to 2p-1f is consider, and effective charges are used to account
for the core polarization effect.

2. Formulation

Excited states |ψJT 〉 of multipolarity J are formed as superposition of particle-hole states [3]

|ψJT 〉 =
∑
ph

(XJT
ph a†pah − Y JT

ph a†hap) |0〉 (1)

Here |0〉 is the exact Hartree-Fock ground state, which is itself described as an antisymmetrized Slater
determinant

|0〉 = A

Π
i=0

a†i |vac〉 . (2)

a†p and ah are creation and annihilation operators for positive-energy single particle states above and below
the Fermi surface. XJT

ph and Y JT
ph are the amplitudes for creating a particle-hole pair and for annihilating a

particle-hole pair already present in the ground states.
The longitudinal form factor squared between initial and final nuclear shell-model states of spin (isospin)

Ji, f(Ti, f) are related to the reduced matrix elements by [4]

F 2
L(q) = 4π

Z2(2Ji+1)

∣∣∣∣∣∣∣
∑

T=0,1

(−1)Tf−TZ




Tf

−Nf

T

0

Ti

Ni




×
〈
ψJf Tf

∣∣∣∥∥∥M̂Coul
JT

∥∥∥∣∣∣ψJiTi

〉∣∣∣2 F 2
c.m.(q)F 2

f.s.(q),

(3)

where Ni(Nf ) denote the isospin projection of the initial (final) state, respectively. F 2
c.m.(q) and F 2

f.s.(q) are
form factor corrections [5].
The many-particle nuclear matrix elements can be written in terms of single-particle matrix elements

〈
ψJf Tf

∣∣∣∥∥∥M̂Coul
JT

∥∥∥∣∣∣ψJiTi

〉
=

∑
ph

[〈
p

∣∣∣∥∥∥M̂Coul
JT

∥∥∥∣∣∣h〉
XJT

ph

+ (−1)jh−jp−J−T
〈
h

∣∣∣∥∥∥M̂Coul
JT

∥∥∥∣∣∣ p〉 Y JT
ph

]
.

(4)

Single-particle matrix element can be written in terms of single-particle matrix element reduced in spin only
[6] as

〈p
∣∣∣∥∥∥M̂Coul

JT=0

∥∥∥∣∣∣h〉
=
1√
2

∑
tZ

〈p
∥∥∥M̂Coul

J tZ

∥∥∥h
〉

(5)

〈p
∣∣∣∥∥∥M̂Coul

JT=1

∥∥∥∣∣∣ h〉
=

√
3
2

∑
tZ

(−1) 12−tZ 〈p
∥∥∥M̂Coul

J tZ

∥∥∥h
〉

(6)

The longitudinal (Coulomb) form factor is arising from the charge density of a point nucleon. The reduced
single-particle matrix element of the Coulomb operator is defined as [7]

〈np�pjp

∥∥∥M̂Coul
J tZ

∥∥∥nh�hjh

〉
= e(tZ)PJ(�p, �h)CJ(jp, jh)

×〈np�p| jJ(qr)| nh�h〉
(7)
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where

e(tZ) =
1 + τZ(i)
2

, τZ = 2tZ, PJ =
1
2

[
1 + (−1)�p+�h+J

]

and

CJ(jp, jh) = (−1)jp+1/2

[
(2jp + 1)(2J + 1)(2jh + 1)

4π

]1/2

×




jp

1/2

J

0

jh

−1/2




(8)

Using the ansatz of equation (1) for the wave function, and linearizing the equations of motion, leads (this
is strictly true only if one ignore retardation corrections) to the familiar RPA eigenvalue problem [8]

∑
p2h2




AJT
p1h1 , p2h2

BJT
p1h1, p2h2

−BJT
p1h1 , p2h2

−AJT
p1h1 , p2h2







XJT
p2h2

Y JT
p2h2


 = �ω




XJT
p1h1

Y JT
p1h1


, (9)

with

AJT
p1h1 , p2h2

= (εp1 − εh1 )δh1h2δp1p2 + V JT
p1h1 , p2h2

(10)

BJT
p1h1, p2h2

= (−1)1+T+jh1−jp1−J V JT
p1h1 , p2h2

. (11)

The matrix elements for particle-hole states V JT
p1h1 , p2h2

, coupled to J and T, are given by a sum of particle-
particle matrix elements, 〈p2h1| V | p1h2〉 J′ T ′ , coupled to different values of J ′and T ′ [9]:

V J T
p1h1 , p2h2

= −
∑
J′ T ′

(2J ′ + 1)(2T ′ + 1)




jp1 jh2 J ′

jp2 jh1 J






1/2 1/2 T ′

1/2 1/2 T




× 〈p1h2| V | p2h1〉 J′ T ′

(12)

The particle-particle residual interaction used in this work is the Michigan three-rang Yakawa (M3Y) in-
teraction [10, 11]. The M3Y interaction basically represents the G-Matrix for two nucleons bound near
the Fermi surface, and therefore somewhat realistic, and enables us to avoid tedious computation. In its
simplest form the M3Y interaction is given by two direct terms with different ranges and an exchange term
represented by a delta interaction.

3. Results and Discussion

The Hamiltonion is diagonalized in the space of the single particle-hole states which include the orbits
0s1/2, 0p3/2, 0p1/2 , 0d5/2, 1s1/2, 0d3/2 , 0f7/2, 1p3/2, 0f5/2 and 1p1/2 in the presence of the M3Y interaction,
then results are compare with our previous results depend on MSDI and with the available experimental
data.
In general the value of amplitudes XJT

ph and Y JT
ph was used to calculate the reduced matrix elements

of particle-hole states of the coulomb scattering operator M̂Coul
JT in terms of the reduced single particle

matrix element. The longitudinal (coulomb) form factors are calculated and interpreted with using mixing
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parameter γ that mixes the ground state |n � j〉 with the state |n+ 1 � j〉 and with using effective charges
to compensates for the configuration that are outside the space considered in this work.
In Figure 1, we show the longitudinal electron scattering data for Buti et al. [12] for the lowest nonspurious

1− (T = 0, Ex = 7.12 MeV) state in 16O, compared to our RPA calculation based on M3Y interaction. The
comparison shows elimination of the spurious contamination for the 1− state when the admixture of higher
orbits in the ground state are taken into consideration with γ = 0.9. Core polarization effects are introduced
with effective charges ep = 1.35e for protons and en = 0.45e for neutrons. The value of the size parameter
b of HO potential for single particle wave function used in the state is 1.83 fm, which is consistent with that
in Reference [12]. The form factor predictions are reasonable agreement with data, but the radial scale is
compressed. Our previous RPA calculations based on MSDI predicts the second state 1− (15.58 MeV) is
the nonspurious state.
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Figure 1. The Longitudinal form factor C1 data for the lowest 1− (7.12 MeV) T=0 state in 16O taken from

[12] compared with RPA calculation using M3Y interaction from this work and with RPA calculation using MSDI

interaction [8].

The longitudinal form factor for the 3−(T = 0, Ex = 6.13 MeV), C3 excitation in 16O is shown in Figure
2. Our RPA Calculations with M3Y is based on the single-particle wave functions of the HO potential with
size parameter b = 1.8 fm, and effective charges ep = 1.35e and en = 0.45e for the protons and neutrons,
respectively. Admixture of higher orbits in the ground state for the 3− (6.13 MeV) state is less important
from that in the 1− (7.12 MeV) state. Results are consistent with our previous results of Referance [8],
where their effective charges is ep = 1.15e and en = 0.15e. The present and previous results agree in shape
and magnitude quite well with experimental data for all momentum transfer values.

The longitudinal C2 form factor for the 2+ (T = 0, Ex = 4.44 MeV) excitation in 12C is shown in
Figure 3. There is good agreement with experimental data (taken from Reference [13]) for all momentum
transfer values satisfied with b = 1.64 fm, ep = 1.35e, en = 0.45e and admixture factor γ = -0.99. The same
agreement with experimental data (taken from Reference [13]) is seen in Figure 4, the longitudinal form
factor of the 5− (T=0, Ex =4.48 MeV) state in 40Ca with b=1.9 fm, ep=1.25e, en=0.25e and γ =1.0.
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Figure 2. The Longitudinal form factor C3 data for the lowest 3− (6.13 MeV) T=0 state in 16O taken from

[12] compared with RPA calculation using M3Y interaction from this work and with RPA calculation using MSDI

interaction [8].
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Figure 3. The Longitudinal form factor C2 data for the lowest 2+ (4.44 MeV) T=0 state in 12C taken from

[13] compared with RPA calculation using M3Y interaction from this work and with RPA calculation using MSDI

interaction.
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Figure 4. The Longitudinal form factor C5 data for the lowest 5− (4.48 MeV) T=0 state in 40Ca taken from

[13] compared with RPA calculation using M3Y interaction from this work and with RPA calculation using MSDI

interaction [5].
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