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Abstract

In the present paper, we solve the one-dimensional Kemmer equation in the presence of the Dirac

oscillator potential. Following Greiner in [23], we have shown that the eigensolutions are decoupled in

two sets.
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1. Introduction

In relativistic quantum mechanics, exact solutions of the wave function are very important in the under-
standing of the physics that can be brought by such solutions.

The relativistic wave function for a massive spin-1 particle was initially derived by Kemmer in 1939 [1].
The Kemmer equation is a Dirac-type equation, which involves matrices obeying a different scheme of
commutation rules [1–3]. The massive spin-1 particle, that we consider here, constitutes a two-particle
system of spin-1/2 instead of a single spin-1 particle, and therefore the Kemmer equation is a two-body
Dirac-like equation. Recently, this equation has particularly got more interest [4–17]. We review the Kemmer
equation because of interest in the quark-anti-quark bound state problem.

The Dirac oscillator (DO) is one of the most important quantum systems, as it is one of the very few
that can be solved exactly [7, 8, 15, 18, 19]. It was for the first time studied by Ito and Carriere [18]. On
the other side, Moshinsky and Szczepaniak [19] were the first to introduce substitution in the free Dirac
equation the momentum operator �p like �p − imβω�x, with �x = (x, y, z) being the position vector, m the
mass of the particle and ω the frequency of the oscillator. They could obtain a system in which the positive
energy states have a spectrum similar to the one of the non-relativistic harmonic oscillator. It can be shown
that the Dirac oscillator interaction is a physical system, which can be interpreted as the interaction of the
anomalous magnetic moment with a linear electric field [20, 21].

The Dirac oscillator has aroused a lot of interest both because it provides one of the few examples of
Dirac equation exact solvability and because of its numerous physical applications. As a relativistic quan-
tum mechanical problem, the DO has been studied from many viewpoints, including covariance properties,
complete energy spectrum and corresponding wave functions, symmetry Lie algebra, shift operators, hidden
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super symmetry, conformal invariance properties, as well as completeness of wave functions (see [22]). Rel-
ativistic many-body problems with Dirac oscillator interactions have been extensively studied with special
emphasis on the mass spectra of mesons (quark-anti quark systems) and baryons (three-quark systems).
The dynamics of wave packets in a Dirac oscillator has been determined and a relation with the Jaynes-
Cummings model established. The (2 + 1) space time has also been shown to be an interesting framework
for discussing the DO in connection with new phenomena (such as the quantum Hall effect and fractional
statistics) in condensed matter physics. Thermodynamic properties of the DO in (1+1) space time have
been mentioned to be relevant to studies on quark-gluon plasma models (see [22] and references therein).

The aim of this paper is the explore the salient features of the Kemmer oscillator in the case of one dimen-
sional. So, this article is planned as follows. In Section II, we calculate the eigenvalues and eigenfunctions
of massive spin-1 particles by using the Kemmer equation. Section III will be the conclusion.

2. Eigensolutions of one-dimensional Kemmer oscillator

The Dirac-like relativistic Kemmer equation for spin-1 particles is [1–3]

(βµpµ −Mc)ψK = 0, (1)

where M is the total mass of two identical spin- 12 particles. The 16×16 Kemmer matrices βµ (µ = 0, 1, 2, 3)
satisfy the relation

βµβνβλ + βλβνβµ = gµνβλ + gλνβµ, (2)

with

βµ = γµ ⊗ I + I ⊗ γµ. (3)

In equation (3), I is a 4 × 4 identity matrix, γµ are the Dirac matrices, and ⊗ indicates a direct product.
In the presence of the Dirac oscillator potential, the momentum operator �p, in the free Kemmer equation,
could be substituted by �p − iMBω�x, where the additional term is linear in |x|. In this case, the Kemmer
equation with a Dirac oscillator interaction is [15][(

γ0 ⊗ I + I ⊗ γ0
)
E − c

(
γ0 ⊗ �α+ �α⊗ γ0

) · (�p− iMωB�x)−Mc2γ0 ⊗ γ0
]
ψK = 0, (4)

where ω is the oscillator frequency, and the operator B is chosen as B = γ0 ⊗ γ0 ,with B2 = I. In (1+1)
dimensions the standard Dirac γ matrices are replaced by Pauli σ matrices, and the equation (4) becomes[(

γ0 ⊗ I + I ⊗ γ0
)
E − c

(
γ0 ⊗ σx + σx ⊗ γ0

) · (px − iMωBx) −Mc2γ0 ⊗ γ0
]
ψK = 0, (5)

where

γ0 =
(

1 0
0 −1

)
, σx =

(
0 1
1 0

)
. (6)

The stationary state ψK of equation (5) is four-component wave function of the Kemmer equation, which
can be written in the form

ψK = ψD ⊗ ψD =
(
ψ1 ψ2 ψ3 ψ4

)T
, (7)

where ψD is the solution of the Dirac equation. Putting ψK given in equation (7) into equation (5), we
easily obtain four linear algebraic equations(

2E −Mc2
)
ψ1 − cp+ψ2 − cp+ψ3 = 0, (8)
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−cp−ψ1 +Mc2ψ2 + cp−ψ4 = 0, (9)

−cp−ψ1 +Mc2ψ3 + cp−ψ4 = 0, (10)

cp+ψ2 + cp+ψ3 −
(
2E +Mc2

)
ψ4 = 0, (11)

where p± = px ± iMωx. From these equations we get the results:

ψ2 = ψ3, ψ1 =
2c

2E −Mc2
p+ψ2, ψ4 =

2c
2E +Mc2

p+ψ2. (12)

Using (12), ψ1, ψ3 and ψ4 are directly eliminated in favor of ψ2, so one can get[(
2c2

2E +Mc2
− 2c2

2E −Mc2

)
p− · p+ +Mc2

]
ψ2 = 0, (13)

where

p− · p+ = (px − iMωx) · (px + iMωx) = p2
x +M2ω2x2 +Mω�, with [px, x] = −i�. (14)

After a simple calculation, the wave equation of ψ2 appearing in equation (13) verifies[
d2

dx2
+ ξ2 − λ2x2

]
ψ2 (x) = 0, (15)

where

ξ2 =
E2 − (mc2

)2
�2c2

− Mω

�
, λ =

Mω

�
, (16)

and where

m =
M

2
(17)

is the mass of the spin- 12 particle. In introducing a new variable, y = λx2, and a new function ϕ (y), linked
to ψ2 like

ψ2 (y) = e−
y
2ϕ (y) , (18)

one may simplify (15) into a new form:

y
d2ϕ (y)
dy2

+
(
1
2
− y

)
ϕ (y) +

(
κ

2
− 1

4

)
ϕ (y) = 0. (19)

where κ is

κ =
ξ2

2λ
=

1
2

(
E2 − (mc2

)2
�ωmc2

− 1

)
. (20)

We can identify (19) as Kummer’s differential equation (see Greiner [23] and Andrews [24]). The solutions
of the equation (19), according the y variable, is then

ϕ (y) = A 1F1

(
a;

1
2
; y
)
+By

1
2 1F1

(
a +

1
2
;
3
2
; y
)
, (21)
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where

a = −
(
κ

2
− 1

4

)
, (22)

and where 1F1 (µ; υ; y) is the confluent hyper-geometric function. In terms of the variable x, (21) becomes

ψ2 (x) = Ae−
mω
2�

x2

1F1

(
a;

1
2
;
mω

�
x2

)
+Be−

mω
2�

x2
√

mω

�
x 1F1

(
a+

1
2
;
3
2
;
mω

�
x2

)
, (23)

where A and B are a normalizing factors. The solutions of our physical problem follows is determined by
the wave function in (23). Therefore the necessary square integrability of ψ implies that ψ2 must vanish
at infinity. This requirement is fulfilled only when the hyper-geometric functions terminate and become
polynomials. In this case, the requirement for normalization leads to the quantization of energy.

Following Greiner [23], the solutions of equation (23) can be decoupled, according to parameter a, in two
possible cases:

• For a+ 1
2 = −n, where A = 0, we obtain

κ

2
− 1

4
= n+

1
2
, (24)

with the eigenfunction

ψ2 (x) = Be−
mω
2�

x2
x 1F1

(
−n; 3

2
;
mω

�
x2

)
, (25)

and the energy

En = mc2
(
1 + 4

�ω

mc2
[n+ 1]

) 1
2

, (26)

It is straightforward to check that equation (26) may be written as

En = mc2 (1 + 4r [n+ 1])
1
2 , (27)

where the parameter r, which controls the non relativistic limit, is defined by

r =
�ω

mc2
. (28)

In the non-relativistic limit with E = ε+mc2 and where ε << mc2, the Taylor expansion up to second order
of the above would give us

E � mc2 + 2 (n+ 1) �ω − 2(n+ 1)2
�
2ω2

mc2
. (29)

It is thus seen that the first term corresponds to the rest energy of the particle, the second term to the non
relativistic harmonic oscillator and the third is the relativistic correction term.

• For a = −n, where B = 0, we have

κ

2
− 1

4
= n, (30)
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with the eigenfunction

ψ2 (x) = Ae−
mω
2�

x2

1F1

(
−n; 1

2
;
mω

�
x2

)
, (31)

and the energy

En = mc2 (1 + r [4n+ 2])
1
2 . (32)

In the case of the non-relativistic limit, equation (32) becomes

E � mc2 + (2n+ 1) �ω − 1
2
(2n+ 1)2

�
2ω2

mc2
. (33)

As in the first case, the first term corresponds to the rest energy of the particle, the second term to the non
relativistic harmonic oscillator and the third is the relativistic correction term.

The polynomials occurring in (25) and (31) are known as the Hermite polynomials. They are defined by

H2n (ξ) = (−1)n
(2n)!
n! 1F1

(
−n; 1

2
; ξ2

)
, (34)

H2n−1 (ξ) = (−1)n
2 (2n+ 1)!

n!
ξ 1F1

(
−n; 3

2
; ξ2

)
, (35)

where ξ =
√
λx. In this case, and from equations (34) and (35), the eigenfunctions of the massive spin-1

particles can be rewritten into another form as:

• For a+ 1
2 = −n, we write

ψ2 (x) = Nne
− λ

4 x2
H2n−1 (ξ) , (36)

and the total associated wave function is

(ψK)n (x) =




2c
2E−Mc2 (px + iMωx)

1
1

2c
2E+Mc2 (px + iMωx)


NnormH2n−1 (ξ) e−

λ
4 x2

. (37)

• For a = −n, we have

ψ2 (x) = N ′
ne

−λ
4 x2

H2n (ξ) , (38)

and the total corresponding associated wave function is

(ψK)n (x) =




2c
2E−Mc2 (px + iMωx)

1
1

2c
2E+Mc2 (px + iMωx)


N ′

normH2n (ξ) e−
λ
4 x2

. (39)

The both normalized factors Nnorm and N ′norm are given by

Nnorm =

√
1[

�2c2 (a2 − b2)λ
{
22n

(
2n− 1

λ

)− 2 (2n− 1)
}] 1

(2n− 1)!
√
π
, (40)
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N ′
norm =

√
1[

�2c2 (a2 − b2)λ
{
2n+1

(
n+ 1− 1

λ

)− 2n
}] 1

n!
√
π
, (41)

where

a =
1

E −mc2
, b =

1
E +mc2

. (42)

Equations (40) and (41) are obtained by using the fundamental formula [24]

(ψK , ψK) =
∫ +∞

−∞
ψ†

K

(
γ0 ⊗ γ0

)
ψKdx = 1, (43)

+∞∫
−∞

Hn (y)Hm (y) e−y2
dy = 2nn!

√
πδmn, (44)

+∞∫
−∞

Hl (y)Hm (y)Hn (y) e−y2
dy =

2
(l+m+n)

2 l!m!n!
√
π(

l+m−n
2

)
!
(

n+l−m
2

)
!
(

n+m−l
2

)
!
. (45)

3. Conclusion

In this article, and following the prescription of Moshinsky and Szczepaniak [19], the form of the Dirac
oscillator potential is included in the Kemmer equation, in order to explore the salient features of the Kemmer
oscillator in the case of one dimensional, and to obtain the form of the energy spectrum. Interestingly, this
prescription yields the relativistic eigenvalues having unequal spacing. From Tables (1) and (2), we show
a comparison between the relativistic energy levels with those non-relativistic, and that in three region
according to value’s of parameters r: here we comment only on the case where a+ 1

2 = −n and the results
are extended to the second case where a = −n.

• The first region where the energy of oscillation �ω is equal to the rest energy mc2 (r = 1): in this case,
the non-relativistic energy levels are larger than those in the relativistic case.

• The second region where the energy of oscillation �ω is comparable to the rest energy mc2 (r = 0.1,
r = 0.01): the Kemmer oscillator has an appropriate non-relativistic limit.

• Finally, the third region where the energy of oscillation �ω is smaller than that at the rest mc2

(r = 0.00001): in this case the non-relativistic spectrum of energy is unimportant compared to the
relativistic case.

From these three remarks, we can note that the levels of the Kemmer oscillator accumulate when the values
of the parameter r decreases (see Figure 1).

To conclude, let us note that the form of the energy spectrum of the 1D Kemmer oscillator can be used
in the study of the thermal properties of this oscillator like in the case of the Dirac oscillator for spin-12
particle [25].
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Table 1. The energy spectrum E = E
mc2

of the 1D Kemmer oscillator for different values of r where a + 1
2
= −n.

Here, we have used the non relativistic limit Enr = 2r (n + 1).

r = 1 r = 0.1 r = 0.01 r = 0.00001

n Er Enr Er Enr Er Enr Er Enr

0 2.236 2 1.183 0.2 1.019 0.02 1.00002 0.000002
1 3 4 1.341 0.4 1.039 0.04 1.00004 0.000004
2 3.605 6 1.483 0.6 1.058 0.06 1.00006 0.000006
3 4.123 8 1.612 0.8 1.077 0.08 1.00008 0.000008
4 4.582 10 1.732 1 1.095 0.1 1.0001 0.0001
5 5 12 1.843 1.2 1.113 0.12 1.00012 0.00012
6 5.385 14 1.949 1.4 1.131 0.14 1.00014 0.00014
7 5.744 16 2.049 1.6 1.148 0.16 1.00016 0.00016
8 6.082 18 2.144 1.8 1.166 0.18 1.00018 0.00018
9 6.403 20 2.236 2 1.183 0.2 1.0002 0.0002
10 6.708 22 2.323 2.2 1.2 0.22 1.00022 0.00022
20 9.129 42 3.065 4.2 1.356 0.42 1.00042 0.00042
30 11.180 62 3.66 6.2 1.496 0.62 1.00062 0.00062
40 12.845 82 4.171 8.2 1.624 0.82 1.00082 0.00082
50 14.317 102 4.626 10.2 1.743 1.02 1.00102 0.00102
60 15.652 122 5.039 12.2 1.854 1.22 1.00122 0.00122
70 16.881 142 5.422 14.2 1.959 1.42 1.00142 0.00142
80 18.027 162 5.779 16.2 2.059 1.62 1.00162 0.00162
90 19.105 182 6.115 18.2 2.154 1.82 1.00182 0.00182
100 20.124 202 6.434 20.2 2.244 2.02 1.00202 0.00202
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Figure 1. The diagramm of energy E of the 1D Kemmer oscillator for different values of r in both cases.
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Table 2. The energy spectrum E = E
mc2

of the 1D Kemmer oscillator for different values of r where a = −n. Here,

we have used the non relativistic limit Enr = r (2n + 1).

r = 1 r = 0.1 r = 0.01 r = 0.00001

n Er Enr Er Enr Er Enr Er Enr

0 1.732 1 1,095 0,1 1,009 0.01 1,00000 0.00001
1 2.645 3 1,264 0.3 1,029 0.03 1,00002 0.00003
2 3,316 5 1,414 0.5 1,048 0.05 1,00004 0.00005
3 3,872 7 1,549 0.7 1,067 0.07 1,00006 0.00007
4 4,358 9 1,673 0.9 1,086 0.09 1,00008 0.00009
5 4,795 11 1,788 1.1 1,104 0.11 1,00010 0.00011
6 5,196 13 1,897 1.3 1,122 0.13 1,00012 0.00013
7 5,567 15 2 1.5 1,140 0.15 1,00014 0.00015
8 5,916 17 2,097 1.7 1,157 0.17 1,00016 0.00017
9 6,244 19 2,190 1.9 1,174 0.19 1,00018 0.00019
10 6,557 21 2,280 2.1 1,191 0.21 1,00020 0.00021
20 9,11 41 3,033 4.1 1,349 0.41 1,00040 0.00041
30 11,09 61 3,633 6.1 1,489 0.61 1,00060 0.00061
40 12,767 81 4,147 8.1 1,618 0.81 1,00080 0.00081
50 14,247 101 4,604 10.1 1,737 1.01 1,00100 0.00101
60 15,588 121 5,019 12.1 1,849 1.21 1,00120 0.00121
70 16,822 141 5,403 14.1 1,954 1.41 1,00140 0.00141
80 17,972 161 5,761 16.1 2,054 1.61 1,00160 0.00161
90 19,052 181 6,099 18.1 2,149 1.81 1,00180 0.00181
100 20,074 201 6,418 20.1 2,24 2.01 1,00200 0.00201
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