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Abstract

The study of the electrical resistivity ρL of alkali Na-based binary alloys Na1−xLix, Na1−xKx,

Na1−xRbx and Na1−xCsx have been made by well-recognized model potential of Gajjar et al. The

most recent exchange and correlation functions due to Farid et al (F) and Sarkar et al (S) are used for

the first time in the study of electrical resistivity of liquid binary mixtures and found suitable for such

study. The results, due to the inclusion of Sarkar et al’s local field correction function, are found superior

to those obtained due to Farid et al’s local field correction function. Electrical resistivity of Na-based

binary alloys compare well with the experimental data available in the literature.
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1. Introduction

Ziman’s nearly free electron (NFE) [1] theory has been fairly successful in describing the quantitative
behavior of electrical resistivity in simple liquid metals. The resistivity of liquid binary alloys has been
studied by application of the nearly free electron theory by Faber and Ziman [2]. This theory has found
many successful applications but it is recognized that calculations are extremely sensitive to details of the
pseudopotentials and structure factors, which are inputs to the theory. The electrical resistivity of liquid
metals and alkali alloys have been studied experimentally by using a rotating magnetic field, four probe
methods for temperatures up to 1200 K, diffraction model formula [3, 4] and theoretically by several authors
[5–17] using Ziman’s formula [1].

In the present study, the electrical resistivity ρL of Na1−xLix, Na1−xKx,Na1−xRbx and Na1−xCsx alkali
binary alloys are computed with the help of pseudopotential formalism. The well recognized model potential
(in r-space) of Gajjar et al [18–20] used to describe the electron-ion interaction in these systems is of the
form

V (r) = −Z e2

r3
c

[
2− exp

(
1− r

rc

)]
r2 ; r < rc

= −Z e2

r
; r ≥ rc,

(1)

where rC is the parameter of the potential and Z is the valency. This form has the feature of a Coulombic
term outside the core and varying cancellation due to a repulsive and attractive contributions to the potential
within the core. The detailed information of this potential is given in the literature [18–20]. The model
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potential parameter rC is adjusted in such a way that the present yielding shows excellent agreement with
the experimental data.

The approach of Faber-Ziman [2] is used to study the concentration dependence of the electrical resistivity
of K-based alkali binary mixture. In the present computation of electrical resistivity of binary mixture, the
most recent local field correction functions due to Farid et al (F) [21] and Sarkar et al (S) [22] are employed
for the first time to investigate the influence of exchange and correlation effects with reference to the static
Hartree (H) [8] screening function. The mathematical expressions of these three exchange and correlation
functions used in the present computations are as follows :

fF (q) = AF Y 4 +BF Y 2 + CF +
[(

AF Y 4 +BF Y 2 + CF

) (
4 − Y 2

4Y

)
ln

∣∣∣∣2 + Y

2− Y

∣∣∣∣
]

, (2)

fS (q) = AS

(
1− {

1 + BSY 4
}
exp

{−CSY 2
} )

, (3)

and

fH = 0, (4)

where AF , BF , CF , AS , BS and CS are the constants of Farid et al’s (F) [21] and Sarkar et al’s (S)
[22] exchange and correlation functions and Y = q / kF with kF be the Fermi wave vector of the alloys,
respectively.

2. Computational Methodology

The Faber-Ziman formula for electrical resistivity of binary alloys is given by [2]

ρL =
3 π m2

4 e2 �3 k6
F n

∞∫
0

S (q) | V (q) |2 q3 θ (2kF − q) dq. (5)

Here n is the electron density related to the Fermi wave number, θ the unit step function that cuts off the
q-integration at 2kF corresponding to a perfectly sharp Fermi surface, S(q) is the structure factor and V (q)
the screened ion pseudopotential form factor.

From rearrangements of the various constants, one can write the formula for the electrical resistivity of
the binary alloys in the form [2]

ρL =
12 Ω
k2

F

2kF∫
0

λ (q) q3 dq, (6)

with

λ (q) = (1− x)S11 V 2
1
(q) + 2

√
x (1− x)S11 S22 V1 (q) V2 (q) + x S22 V 2

2
(q) . (7)

Here V1(q) and V2(q) denote the model potentials for elements A and B, Sij are the partial structure factors, x
is the concentration of the second metallic component of A1−xBx mixture. We have used Ashcroft-Lengreth’s
[23] formulations to generate the partial structure factor of the binary metallic complexes.

3. Results and Discussion

The input parameters and constants used in the present computations are written in Table 1, which are
taken from the literature [13, 15, 16]. The computed results of electrical resistivity are presented in Tables
2–5.
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Table 1. The input parameters and constants.

Metals Z kF (a.u.) Ω (a.u.) rc (a. u.)
Li 1 0.5768 154.29 1.4543
Na 1 0.4742 277.76 2.0232
K 1 0.3826 528.67 2.6369
Rb 1 0.3616 626.13 2.7883
Cs 1 0.3233 876.12 3.5910

Table 2. Electrical Resistivity (in µΩ·cm) of Na1−xLix binary alloy.

x H F S Exp. [13]
0.0 8.41 18.03 12.96 9.6
0.1 13.72 29.55 20.96 -
0.2 17.80 38.05 26.98 35.0
0.3 20.70 43.77 31.14 -
0.4 22.46 46.93 33.55 34.0
0.5 23.16 47.78 34.34 33.0
0.6 22.83 46.52 33.63 32.0
0.7 21.54 43.39 31.52 -
0.8 19.33 38.54 28.11 30.0
0.9 16.19 32.09 23.42 -
1.0 12.06 24.02 17.39 26.0

Table 3. Electrical Resistivity (in µΩ·cm) of Na1−xKx binary alloy.

x H F S Exp. [16]
0.0 8.41 18.03 12.96 9.60
0.1 14.93 32.13 22.95 20.0
0.2 20.03 43.78 30.97 28.9
0.3 23.80 52.96 37.08 35.0
0.4 26.23 59.43 41.21 39.0
0.5 27.26 62.86 43.22 42.5
0.6 26.82 62.87 42.90 42.0
0.7 24.84 59.06 40.08 39.5
0.8 21.26 51.11 34.60 34.5
0.9 16.06 38.70 26.33 26.0
1.0 9.20 21.46 15.10 15.0
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Table 4. Electrical Resistivity (in µΩ·cm) of Na1−xRbx binary alloy.

x H F S Exp. [16]
0.0 8.41 18.03 12.96 9.60
0.1 18.27 39.12 28.00 26.0
0.2 25.89 56.67 40.04 40.0
0.3 31.60 70.94 49.42 57.0
0.4 35.44 81.59 56.08 66.8
0.5 37.27 87.89 59.67 72.5
0.6 36.86 88.91 59.71 72.8
0.7 34.01 83.75 55.76 71.0
0.8 28.64 71.71 47.49 60.0
0.9 20.71 52.27 34.70 46.0
1.0 10.16 24.68 17.06 27.5

Table 5. Electrical Resistivity (in µΩ·cm) of Na1−xCsx binary alloy.

x H F S Exp. [15]
0.0 8.41 18.03 12.96 9.60
0.1 38.02 82.82 58.53 42.5
0.2 62.11 141.63 97.37 80.0
0.3 83.16 198.36 132.78 112.5
0.4 101.39 252.32 164.73 140.0
0.5 115.13 297.99 190.18 162.5
0.6 120.89 324.45 202.96 165.0
0.7 114.36 317.40 195.14 154.0
0.8 93.15 266.77 161.58 130.0
0.9 58.94 173.11 103.76 95.0
1.0 14.89 41.08 25.64 44.6

The concentration dependence of the electrical resistivity ρL is examined by varying concentration x = 0
to x = 1 in the step size of 0.1 of the second metallic component. Most fascinating exchange and correlation
screening functions due to Farid et al (F) and Sarkar et al (S) have used for the first time in such study. In
Figures 1–4, the present outcomes of the electrical resistivity ρL for Na1−xBx (B: Li, K, Rb, Cs) of alkali-
alkali elements viz. Na1−xLix, Na1−xKx, Na1−xRbx and Na1−xCsx alloys are shown with the experimental
results [13, 15, 16]. As concentration x of the B element increase, the resistivity ρL increases and reaches the
maximum value, after that the further increase in x decreases the ρL of the binary system. From the Figures
1–4 it is seen that, the present results due to Sarkar et al’s (S) exchange and correlation function is found
to be in fair agreement with the experimental results [15, 16] for Na1−xRbx and Na1−xCsx alloys, while for
Na1−xKx, alloy show excellent agreement both in magnitude and gradient with experimental data [13]. The
good agreement may be indicative of the free electron behaviour of these alloys in the whole concentration
range. The relative influence of Farid at al (F) and Sarkar et al (S) exchange and correlation functions with
respect to static Hartree (H) dielectric function is 98.23%-193.72% and 44.26%-76.40%, respectively. These
two observations suggest that the proper choice of exchange and correlation function is essential for the
study of the electrical transport properties of binary system.
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Figure 1. Electrical Resistivity of Na1−xLix binary al-

loy.

Figure 2. Electrical Resistivity of Na1−xKx binary alloy.
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Figure 3. Electrical Resistivity of Na1−xRbx binary al-

loy.

Figure 4. Electrical Resistivity of Na1−xCsx binary al-

loy.
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4. Conclusion

The overall picture of the present computations not only confirm the applicability of the model potential
for such study of alkali-alkali binary alloys but it also establishes the use of more prominent dielectric
functions in the study of electrical transport properties of binary mixtures. Such study on electrical transport
properties of other binary liquid alloys and metallic glasses are in progress.
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