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Abstract

There exist a variety of multi-pulse NMR experiments for spectral editing of complex molecules in so-

lution. Maximum quantum correlation NMR spectroscopy (MAXY NMR) is one of the techniques for dis-

tinguishing CHn groups by editing 1H NMR spectra. Spectral assignments of 2D homonuclear J-resolved

NMR spectroscopy become too difficult, due to complex overlapping spectra. In order to overcome this

problem a new technique called 2D MAXY-JRES NMR spectroscopy, which is the combination of MAXY

NMR and homonuclear J-resolved NMR spectroscopy techniques, is used. In this study, product oper-

ator theory of 2D MAXY-JRES NMR spectroscopy is performed for ISnI ′S′
m(I = I ′ = S = S′ = 1

2 ;

n = 1, 2; m = 1, 2, 3) multi-spin systems. By using obtained theoretical results, simulated spectra of 2D

MAXY-JRES NMR spectroscopy are presented for several CHnCHm (CAnCXm) groups.

Key Words: NMR, MAXY-JRES, product operator formalism, multi-spin systems.

1. Introduction

There exists a large number of homo and heteronuclear multiple-pulse 1D, 2D and 3D Nuclear Magnetic
Resonance (NMR) experiments. Maximum quantum correlation NMR spectroscopy (MAXY NMR) is one of
the techniques for distinguishing CHn groups by editing 1H NMR spectra [1-7]. 13C NMR spectroscopy is also
widely used in editing methods such as DEPT [8] and SEMUT [9]. Editing and selective detection methods
for 1H NMR spectroscopy are reviewed elsewhere [10]. In homonuclear J-resolved NMR spectroscopy, the
chemical shift and spin-spin coupling parameters are resolved along the two different axes for the same kind of
coupled nuclei such as 1H. Sometimes, spectral assignments of 2D homonuclear J-resolved NMR spectroscopy
become too difficult, due to complex overlapping spectra. In order to overcome this problem a new technique
called 2D MAXY-JRES NMR spectroscopy, which is the combination of MAXY and homonuclear J-resolved
NMR spectroscopy techniques, is used [3]. This technique is used for the identifications of CHnCHm groups
in complex samples such as biological fluids [3].

As NMR is a quantum mechanical phenomenon, nuclear spin systems can be treated by quantum me-
chanical methods. The product operator formalism, as a simple quantum mechanical method, has been
developed for the analytical description of multiple-pulse NMR experiments on weakly coupled spin systems
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in liquids having spin 1/2 and spin 1 nuclei [11–19]. In this formalism, the spin operators themselves and
their direct products, called product operators, are used. By using product operator theory, SEMUT NMR
spectroscopy is applied to CDn groups [20]. Experimental and theoretical investigations of 13C DEPT NMR
spectroscopy for CDn systems are presented elsewhere [21]. For CHn and CDn groups, product operator
theory of 2D DEPT J-resolved NMR experiment is a investigated [22-23]. Product operator theory for spin
3/2 and its application for 2D J-resolved NMR spectroscopy is reported [24]. For spin systems having spin
3/2 nuclei, by using the product operator formalism, theoretical investigations of 3D J-resolved, DEPT,
SEMUT, INEPT and RINEPT NMR experiments are also presented [25–27].

In this study, by using product operator formalism, theoretical results are obtained for 2D MAXY-JRES
NMR experiment for ISnI′S′

m(I = I′ = S = S′ = 1
2 ; n = 1, 2; m = 1, 2, 3) multi-spin systems. Then, by

using these theoretical results, simulated spectra of 2D MAXY−JRES NMR experiment for various groups
are obtained. Therefore, by using this technique, the identifications of CHnCHm (CAnCXm) groups are
clearly explained.

2. Theory

The density matrix operator is expressed as a linear combination of base operators BS [11],

σ(t) =
∑

S

bS(t)BS . (1)

For IS (I = 1/2, S = 1/2) spin system, the complete base set consists of 16 product operators such as
E, Iy, IySz, IxSz .

Time dependency of the density matrix is given by [15,17]

σ(t) = exp(−iHt)σ(0) exp(iHt), (2)

where H is the total Hamiltonian which consists of radio frequency (r.f.) pulse, chemical shift and spin-spin
coupling Hamiltonians and σ(0) is the density matrix at t=0. After employing the Hausdorff formula [15],

exp (−iHt)A exp (iHt) = A − (it) [H, A] + (it)2

2!
[H, [H, A]]

− (it)3

3!
[H, [H, [H, A]]] + · · ·

(3)

evolutions of product operators under the r.f. pulse, chemical shift and spin-spin coupling Hamiltonians can
easily be obtained [11-16]. At any time during the experiment, the ensemble averaged expectation value of
the spin angular momentum, e.g. for Iy, is

〈Iy〉 = Tr [Iyσ (t)] , (4)

where σ (t) is the density matrix operator calculated from equation (2) at any time. As 〈Iy〉 is proportional
to the magnitude of the y-magnetization, it represents the signal detected on y-axis. So, in order to estimate
the free induction decay (FID) signal of a multi-pulse NMR experiment, density matrix operator should be
obtained at the end of the experiment.

3. Results and Discussion

In this section, the analytical descriptions of 2D MAXY-JRES NMR experiment for CHnCHm groups
are presented by using product operator formalism. This section is divided into two subsections. In the first
subsection, theoretical results of analytical description for 2D MAXY-JRES NMR experiment are presented.
In the second one, simulated spectra of 2D MAXY-JRES NMR experiment are obtained for several CHnCHm

(CAnCXm) groups having weak coupling between H nuclei.
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3.1. Product operator theory

Pulse sequence illustrated in Figure 1 is used for the product operator description of 2D MAXY-JRES
NMR experiment [3]. The density matrix operator at each stage of experiment is labelled with numbers.
13C is treated as spin I and I′; and 1H as spin S and S′ in Figure 1. In the pulse sequence, optimum
value of ∆ is 1/(2JIS), ∆′ is a short compensation delay, t1 is the incremented evolution delay during which
homonuclear weak spin-spin coupling Hamiltonian (HJ(SS′) = 2πJSS′SzS′

z) takes place between S and S′

spins. This Hamiltonien can be applied for CHnCHm (CAnCXm) groups having weak coupling between H
nuclei. t2 is the acquisition time for S and S′ spins. Starting from the density matrix operator at thermal
equilibrium, one should apply the required Hamiltonians during the pulse sequence and obtain the density
matrix operators for each stage of the experiment. To follow these processes by hand becomes too difficult
for multi-spin systems. In order to overcome this problem a computer program in Mathematica is written in
this study [28-29]. This program is used to obtain the density matrix operator at the end of the experiment
for different spin systems.

90°x 90°x180°x 180°x θx 180°x

90°x 180°y 90°x

t1

BB

FID

17

t2

I, I’

S, S’

1 2 3 4 5 6 7 8 9 10’ 11 12 13 14 15 16

Figure 1. 2D MAXY-JRES NMR pulse sequence.

For ISI′S′ multi–spin system, the density matrix at thermal equilibrium is σ1 = Sz + S′
z . By using the

computer program following density matrices for each labelled point are obtained:

σ1
900

x(S,S′)−−−−−−→ − Sy − S′
y ≡ σ2, (5)

σ2
HJ (IS)∆+H′

J (I′S′)∆−−−−−−−−−−−−−−→ 2IzSx + 2I′zS
′
x = σ3, (6)

σ3
1800

x(S,S′)+900
x(I,I′)−−−−−−−−−−−−−→ 2IySx + 2I′yS′

x = σ4, (7)

σ10 = −2IySx − 2I′yS′
x, (8)

σ12 = 2IzSx + 2I′zS
′
x, (9)

σ12
HJ (S−S′)t1/2+1800

x(S,S′)+HJ (S−S′)t1/2−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ 2IzSxcJ + 2I′zS′
xcJ

+4IzSyS′
zsJ + 4I′zSzS

′
ysJ ,

(10)

σ17 = SycJcS + S′
ycJ c′S − SxcJsS − S′

xcJs′S

−2SyS′
zsJsS − 2SzS

′
ysJs′S − 2SxS′

zcJsS − 2SzS′
xcJs′S ,

(11)
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where HJ(IS) = 2πJISIzSz, H′
J(I

′S′) = 2πJI′S′I′zS′
z, HJ(SS′) = 2πJSS′SzS

′
z , cJ = cos(πJSS′t1), sJ =

sin(πJSS′ t1), cS = cos(ΩS t2), sS = sin(ΩSt2), c′S = cos(Ω′
St2) and s′S = sin(Ω′

St2). In density matrix
operator, only the terms with observable product operators are kept, as they are the only ones that contribute
to the signal on y-axis detection. Then, the density matrix operator for ISI′S′ is equals to σ17 = SycJ cS +
S′

ycJc′S . The density matrix operators obtained at the end of the experiment for ISI′S′, ISI′S′
2, ISI′S′

3,
IS2I

′S′
2 and IS2I

′S′
3 multi–spin systems are given in Table 1.

Table 1. Density matrix operators at end of the 2D MAXY-JRES NMR experiment for various spin systems.

Spin system σ17

ISI′S′ SycJcS + S′
ycJ c′S

ISI′S′
2 Syc2

JcS − (
S′

1y + S′
2y

)
cJc′S sin (θ)

ISI′S′
3 Syc3

JcS +
(
S′

1y + S′
2y + S′

3y

)
cJ c′S sin2 (θ)

IS2I
′S′

2 − (S1y + S2y) c2
JcS sin (θ) − (

S′
1y + S′

2y

)
c2
Jc′S sin (θ)

IS2I
′S′

3 − (S1y + S2y) c3
JcS sin (θ) +

(
S′

1y + S′
2y + S′

3y

)
c2
Jc′S sin2 (θ)

The magnetisation along the y-axis is proportional to 〈Sy〉+
〈
S′

y

〉
and

My(t1, t2) ∝ 〈Sy〉+
〈
S′

y

〉
= Tr [Syσ17] + Tr

[
S′

yσ17

]
. (12)

Now it is necessary to obtain Tr [SyO] and Tr
[
S′

yO′] values of observable product operators indicated by
O and O′. Tr [SyO] and Tr

[
S′

yO′] values are calculated by a computer program and the results for several
spin systems are given in Table 2.

Table 2.
Pn

i=1 Tr [SiyO] and
Pm

j=1 Tr
�
S′

jyO′� values for observable product operators of ISnI ′S′
m(I = I ′ = S =

S′ = 1
2
; n = 1 , 2; m = 1, 2, 3) multi–spin systems.

Spin system Product operator (O) Product operator (O′)
∑n

i=1 Tr [SiyO]
∑m

j=1 Tr
[
S′

jyO′]

ISI′S′ Sy S′
y 4 4

ISI′S′
2 Sy S′

1y + S′
2y 8 16

IS2I
′S′

2 S1y + S2y S′
1y + S′

2y 32 32
ISI′S′

3 Sy S′
1y + S′

2y + S′
3y 16 48

IS2I
′S′

3 S1y + S2y S′
1y + S′

2y + S′
3y 64 96

By using Table 2, the relationship

〈Sy〉 +
〈
S′

y

〉
= 4cJsS + 4cJc′S . (13)

is obtained for IS I′S′ spin system. This equation shows that the spin-spin coupling information appears on
F1 axis and represents two coherences for both S and S′spins with phases of πJt1 ±ΩSt2 and πJt1 ±Ω′

St2;
and half of the amplitude in each component. Therefore, they both give doublets signals at the coordinates
of (J/2, ΩS) and (−J/2, ΩS) for S spin and at the coordinates of (J/2, Ω′

S) and (−J/2, Ω′
S) for S′ spin

with the same intensity distribution of 1 : 1.
The

∑n
i=1 Tr [Siyσ17] and

∑m
j=1 Tr

[
S′

jyσ17

]
values represent the FID signals of 2D MAXY-JRES NMR

experiment for S and S′spins, respectively.
∑n

i=1 Tr [Siyσ17] values and their signal coordinates with the
intensity distribution are presented in Table 3 for S spins. For S′ spins,

∑m
j=1 Tr

[
S′

jyσ17

]
values and their

signal coordinates with the intensity distribution are presented in Table 4.
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Table 3.
Pn

i=1 Tr [Siyσ17] values and their signal coordinates with the intensity distribution for S spins of ISnI ′S′
m(I =

I ′ = S = S′ = 1
2 ; n = 1 , 2; m = 1, 2, 3) multi–spin systems.

Spin system
∑n

i=1 Tr [Siyσ17] values Signal coordinates Intensity distribution
ISI′S′ 4cJcS (J/2, ΩS) , (−J/2, ΩS) 1 : 1
ISI′S′

2 8c2
JcS (J, ΩS) , (ΩS) , (−J, ΩS) 1 : 2 : 1

ISI′S′
3 16c3

JcS (3J/2, ΩS) , (J/2, ΩS) , 1 : 3 : 3 : 1
(−J/2, ΩS) , (−3J/2, ΩS)

IS2I
′S′

2 −32c2
JcS sin (θ) (J, ΩS) , (ΩS) , (−J, ΩS) 1 : 2 : 1

IS2I
′S′

3 −64c3
JcS sin (θ) (3J/2, ΩS) , (J/2, ΩS) , 1 : 3 : 3 : 1

(−J/2, ΩS) , (−3J/2, ΩS)

Table 4.
Pm

j=1 Tr
�
S′

jyσ17

�
values and their signal coordinates with the intensity distribution for S′ spins of

ISnI ′S′
m(I = I ′ = S = S′ = 1

2
; n = 1 , 2; m = 1, 2, 3) multi-spin systems.

Spin system
∑m

j=1 Tr
[
S′

jyσ17

]
values Signal coordinates Intensity distribution

ISI′S′ 4cJc′S (J/2, Ω′
S) , (−J/2, Ω′

S) 1 : 1
ISI′S′

2 16cJc′S sin (θ) (J/2, Ω′
S) , (−J/2, Ω′

S) 1 : 1
ISI′S′

3 48cJc′S sin2 (θ) (J/2, Ω′
S) , (−J/2, Ω′

S) 1 : 1
IS2I

′S′
2 32c2

Jc′S sin (θ) (J, Ω′
S) , (Ω′

S) , (−J, Ω′
S) 1 : 2 : 1

IS2I
′S′

3 96c2
Jc′S sin2 (θ) (J, Ω′

S) , (Ω′
S) , (−J, Ω′

S) 1 : 2 : 1

The total FID values can be generalized as following:
n∑

i=1

Tr [Siyσ17] +
m∑

j=1

Tr
[
S′

jyσ17

]
= (−1)n+1 n 2n+mcm

J sinn−1 (θ) cS

+(−1)m+1
m 2n+mcn

J sinm−1 (θ) c′S .

(14)

The relative signal intensity plots of 2D 1H MAXY-JRES NMR experiment for ISnI′S′
m(I = I′ = S = S′ =

1
2 ; n = 1, 2; m = 1, 2, 3) multi–spin systems as functions of the edited–pulse angle θ are presented in Figure
2. In order to identify CHnCHm groups, by using 2D 1H MAXY-JRES NMR experiment, the FID signals
can be taken for three different angles of 90◦, 180◦ and 270◦. As one can see from Figure 2, only signals
coming from CH groups are observed for the angle of 180◦. When the experiment is performed for an angle
of 90◦, the signals for CH and CH3 groups are positive and for CH2 groups are negative. For the angle of
270◦, all groups give positive signals.
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Figure 2. Relative signal intensity plots of 2D 1H MAXY-JRES NMR spectroscopy for ISnI ′S′
m spin systems as

functions of the selective pulse angle θ.
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3.2. Simulated spectra

One should be aware of the fact that this experiment can be applied only for CHnCHm (CAnCXm)
groups having weak coupling between H nuclei. In simulated spectra, chemical shift values of 1H nuclei are
set to 6.5, 4 and 1.5 ppm for CH, CH2 and CH3 groups, respectively. Spin-spin coupling constants between
two H nuclei are assumed to be 10, 5 and 8 Hz in CHCH2, CHCH3 and CH2CH3 groups, respectively.

For product operator description of NMR experiment, a computer program is written by Kanters et al.
[30–31]. This is called Product Operator Formalism using Maple (POF.M). In order to obtain the simulated
spectra, POF.M is implemented for Fourier transformation of theoretical representations of FID signals
obtained in this study. Simulated spectra of 2D 1H MAXY-JRES NMR experiment for various groups are
given in Figures 3, 4 and 5.
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Figure 3. Simulated 2D 1H MAXY-JRES NMR spectra for ISI ′S′
2 (CHCH2) spin systems for the angles of (a)

θ=90◦ and (b) θ=180◦.

Simulated spectra of ISI′S′
2 (CHCH2 groups) performed for 90◦ and 180◦ are presented in Figure 3(a)

and Figure 3(b), respectively. For an angle of 90◦, positive triplet for CH groups and negative doublet for
CH2 groups are obtained. For the angle of 180◦, while positive triplets are observed for CH groups, there is
no signal coming from CH2 groups. In Figure 4(a) and Figure 4(b), simulated spectra of ISI′S′

3 (CHCH3

groups) performed for the angle of 90◦ and 180◦ are given, respectively. For the angle of 90◦ positive quartet
for CH and positive doublet for CH3 groups are found. For the angle of 180◦ only positive quartet for CH
groups are obtained. As shown in simulated spectra (Figures 3, 4 and 5) that one can easily identify CH,
CH2 and CH3 groups from each other in CHnCHm groups by performing 2D MAXY-JRES NMR experiment
for the angles of 90◦, 180◦ and 270◦.
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Figure 4. Simulated 2D 1H MAXY-JRES NMR spectra for ISI ′S′
3 (CHCH3) spin systems for the angles of (a)

θ=90◦ and (b) θ=180◦.
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Figure 5. Simulated 2D 1H MAXY-JRES NMR spectra for IS2I
′S′

3 (CH2CH3) spin systems for the angles of (a)

θ=90◦ and (b) θ=270◦.

4. Conclusion

By using a computer program written in Mathematica, the product operator theory is applied for the
analytical description of 2D MAXY-JRES NMR experiment for ISnI′S′

m(I = I′ = S = S′ = 1
2 ; n =

1, 2; m = 1, 2, 3) multi-spin systems. Then, simulated spectra of this experiment are obtained for various
groups by implementing POF.M program. It is shown that 2D MAXY-JRES NMR experiment can be
easily used for identification of CH, CH2 and CH3 groups from each other in CHnCHm groups. As the
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product operator theory can be used for weakly coupled spin systems, this experiment can be applied only
for CHnCHm (CAnCXm) groups having weak coupling between H nuclei.
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[28] S. Wolfram, The Mathematica Book, third ed., Wolfram Media/Cambridge University Press, 1996.

[29] Wolfram Research, Mathematica, http://www.wolfram.com.

[30] R. P. F. Kanters, B. W. Char and A. W. Addison, J. Magn. Reson. Series A, 101, (1993), 23.

[31] http://oncampus.richmond.edu/∼rkanters/POF/

354


