
Turk J Phys

32 (2008) , 115 – 122.

c© TÜBİTAK
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Abstract

Nonlinear extensions of the two-mode squeezed vacuum states (NTMSVS’s) are constructed and

special cases of these states are discussed. We have constructed the NTMSVS’s realization of SU(1,1)

Lie algebra. Two cases of the definition are considered for unitary and non-unitary deformation operator

functions. Some nonclassical properties of these states are discussed.
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1. Introduction

The theoretical analysis [1–7] and experimental [8–12] realization of squeezed states of radiation continue
to receive a great deal of attention, due to their potential applications in quantum optical communication,
gravitational wave detection, and mesoscopic electric circuit quantization. While much of the work so far
has concerned itself with single-mode situations [5, 10, 13] some analysis of two-mode states has also been
presented [14–16]. A general invariant squeezing criterion for n-mode systems has been developed, and
squeezing transformations based on symplectic group Sp(4, R) have been investigated [17]. The two-mode
squeezed state (TMSS) generated from a parametric down-conversion amplifier [18], composing of an idler
mode and a signal mode, is an entangled state in the frequency domain.

Multi-mode squeezed states [19] have gained much attention due to the fact that they contain quantum
correlations between the different modes that make up the field [20]. A specific case of such states is the
TMSS, which play a central role because they can be readily produced from reliable sources and controlled
experimentally using accessible sets of operations such as beam splitters, phase shifters and squeezers, and
efficient detection systems [21]. The practical implementation of the quantum teleportation for continuous
variable state has been realized experimentally using the TMSS [22]. The TMSS, which was used in experi-
ments on quantum teleportation [23], is a fundamental entanglement resource in continuous variable system
[24, 25]. A TMSS is an entangled Gaussian continuous variable state that becomes maximally entangled
when it is infinitely squeezed [26]. The transmission through the ideal channel with assistance of TMSS,
employing encoding based on phase space displacement operators and separable (unentangled) measurement
with homodyne detection has been considered [23]. Deterministic signal security communications (cryptogra-
phy) schemes using TMSS have been proposed [27]. The security evaluation of the quantum key distribution

115



ABD AL-KADER, OBADA

system with TMSS has been demonstrated [25] and investigated based on the increase in error probability
[27]. A test of nonlocality for continuous variable using a TMSS as the source of nonlocal correlations and
a measurement scheme based on conditional homodyne detection has been discussed [24].

Squeezed vacuum state (SVS) is important because it can be readily generated using a parametric down-
converter. It has less noise in one quadrature than a coherent state. The nonlinear squeezed vacuum state
(NSVS) has been introduced and investigated [28–31]. The f-analogies of the squeezed vacuum state, using
properties of the inverses of annihilation and creation operators of the f-oscillator, have been constructed
[28] and the Pegg-Barnett phase formalism discussed. The NTMSVS has been studied [29]. The nonlinear
extension of the single-mode SVS and some of their statistical properties have been considered [30]. Nonlinear
squeezing of the vacuum and one-photon states as realizations of the SU(1,1) group have been constructed
and some of their properties investigated [31]. The nonlinear single-mode squeezed coherent states (NLSCS’s)
have been studied [32, 33].

The SU(1,1) coherent states (CS’s) as defined by Perelomov [34] have previously been discussed in
connection with squeezed states of a single-mode field [35] and are special case of the two-photon CS’s
of Yuen [2], namely, the SVS [9–11]. The particular realization of the SU(1,1) Lie algebra required for
these states involves bilinear and quadratic products of field mode. Such states may be produced out
of vacuum by a degenerate parametric amplifier whose Hamiltonian is linear in the SU(1,1) generators.
However, it has long been known that the Lie algebra of SU(1,1) can be realized in terms of bilinear
products of the annihilation and creation operators of two boson modes [36–43]. The relevant unitary
irreducible representations, however, are different from those related to the case of the single-mode field.
In fact a special case of these states, known as the two-mode SVS’s have been much studied and may be
produced by a nondegenerate parametric amplifier acting on a two-mode vacuum state [41, 42].

The SU(1,1) Lie algebra is spanned by the three generators K1, K2, K3:

[K1, K2] = −iK3, [K2, K3] = iK1, [K3, K1] = iK2. (1.1)

It is convenient to use the raising and lowering generators K± = K1 ± iK2 , which satisfy

[K3, K±] = ±K±, [K−, K+] = 2K3. (1.2)

The Casimir operator K2 = K2
3 − K2

1 − K2
2 for any irreducible representation is given by K2 = k(k − 1)I

where k is constant. Thus a representation of SU(1,1) is determined by the parameter k which is the
so-called Bargmann index. For SU(1,1) there are many unitary irreducible representations, and because
SU(1,1) is a noncompact group, they are all of infinite dimensions. Some of the representations are, in
fact, continuous but here we shall only deal with the representations known as the positive discrete series
for which the operator K3 is diagonal and has a discrete spectrum. Its discrete representation satisfies the
following relation:

K+|n, k〉 =
√

(n + 1)(2k + n)|n + 1, k〉,
K−|n, k〉 =

√
n(2k + n − 1)|n − 1, k〉,

K3|n, k〉 = (n + k)|n, k〉,
(1.3)

where (n = 0, 1, 2, . . .). The ground state (the cyclic vector) of the representation is given by the condition
K−|0, k〉 = 0.

The Perelomov coherent state (PCS) |α, k〉Per for SU(1,1) Lie algebra may be obtained by applying the
unitary operator DPer(ξ) to the ground state |n = 0, k〉 [34], that is

|α, k〉Per = DPer(ξ)|0, k〉

= (1 − |α|2)k
∞∑

n=0

√
Γ(2k + n)
n!Γ(2k)

αn|n, k〉,
(1.4)
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where ξ = |ξ|eiθ0 is a complex number, with α = eiθ0 tanh |ξ|, and

DPer(ξ) = exp(ξK+ − ξ∗K−)

= exp(αK+)(1 − |α|2)K3 exp(−α∗K−)
(1.5)

is the SU(1,1) displacement operator. The PCS’s form an overcomplete set of states.
The aim of this article is to define the nonlinear two-mode squeezed vacuum states (NTMSVS’s) and

construct the realizations of SU(1,1) Lie algebra. The remainder of this paper is organized as follows. In
section 2 we introduce the definition of NTMSVS’s and some special cases are fully expressed. In section 3
we discuss realizations of SU(1,1) Lie algebra for these states.

2. Definition of nonlinear two-mode squeezed vacuum states

The coherent state satisfies the eigenvalue equation a|α〉 = α|α〉, with α = |α| exp(iθ) and a is the
annihilation operator for bosons. However, the coherent state |α〉 parameterized by α can be cast as the result
of the action of the displacement operator D(α) on the ground state |0〉, with D(α) = exp(αa+ −α∗a) [44],
where a+ is the creation operator for bosons being the hermitian conjugate of a, and α∗ the complex conjugate
of α. The NLCS’s |α〉f , are right-hand eigenstates of the product of the boson annihilation operator a and
the operator valued function f(a+a) of the number operator N = a+a. They satisfy af(N)|α〉f = α|α〉f ,
the nature of the nonlinearity depends on the choice of the function f(N) [45].

The TMSVS is obtained by acting by the two-mode squeezing operator on a two-mode vacuum. In its
number state representation, it takes the form

|z〉 = S12(z)|0a, 0b〉 =
1

cosh r

∞∑
n=0

(eiφ tanh r)n|n, n〉 (2.1)

where
S12(z) = exp (za+b+ − z∗ab). (2.2)

Here, a and b are standard annihilation operators, i.e., [a, a+] = 1, [b, b+] = 1, with z = r exp(iφ).
In this section we extend the investigation to the NTMSVS’s. We first start with the case when the

operators valued functions are unitary.

2.1. The definition for unitary nonlinear functions

The annihilation and creation for two-mode f-oscillators are defined [29] as

af = af1(Na) and bf = bf2(Nb), (2.3)

where the following commutation relations hold

[af , Na] = af , [bf , Nb] = bf , [a+
f , Na] = −a+

f , [b+
f , Nb] = −b+

f (2.4)

and
[af , a+

f ] = (Na + 1)f(Na + 1)f+(Na + 1) − Naf+(Na)f(Na) (2.5)

where Na = a+a and Nb = b+b are number operators in the mode a and mode b, respectively. Here,
the nonlinear functions f1(Na) and f2(Nb) are assumed unitary, i.e., f+

i = f−1
i , i = 1, 2. Therefore, the

corresponding squeezing operator is written as

S12(z, f1, f2) = exp (za+
f b+

f − z∗af bf) (2.6)
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and satisfies the identities

S−1
12 (z, f1, f2) = S+

12(z, f1, f2) = S12(−z, f1, f2). (2.7)

The NTMSVS’s are defined by acting by the nonlinear two-mode squeezing operator on a two-mode vacuum:

|z〉f = S12(z, f1, f2)|0a, 0b〉. (2.8)

Consequently the NTMSVS’s are given by

|z〉f =
1

cosh r

∞∑
n=0

(eiφ tanh r)n(f1(n)!)(f2(n)!)|n, n〉, (2.9)

where f(0) = 1, and f(n)! =
∏n

i=0 f(i).

2.2. The definition for non-unitary nonlinear functions

Even if the operator functions f1(Na) and f2(Nb) are not unitary operator function one can still define a
NTMSVS’s in a similar way as that outlined in [28–33]. The steps towards this depends on using a canonical
conjugate operators. If we have

af = (af(Na)), a+
f = ([f(Na)]+a+), and bf = (bf(Nb)), b+

f = ([f(Nb)]+b+), (2.10)

then the canonical conjugate operators are

A+ =
1

f(Na)
a+, A = a

1
[f(Na)]+

, B+ =
1

f(Nb)
b+, and B = b

1
[f(Nb)]+

. (2.11)

The operators af , bf , A and B satisfy the commutation relations

[af , A+] = 1, [A, a+
f ] = 1, [bf , B+] = 1, and [B, b+

f ] = 1. (2.12)

In what follows the operator valued function fi is assumed to be a well-behaved real function. The use of
the operators af bf and A+B+ (instead of a+

f b+
f ) does not insure the operator S12(z) being unitary, thus one

looks for the eigenfunctions of the operators

C1 =
1√

1 − |ξ1|2
(af bf − ξ1A

+B+) or C2 =
1√

1 − |ξ2|2
(AB − ξ2a

+
f b+

f ) (2.13)

with the eigenvalue zero, i.e., the nonlinear squeezed vacuum states are the solutions of the equations

Ci|Ψi〉f = 0, i = 1, 2. (2.14)

By assuming |Ψi〉f is the eigenfunction for the operator C1, in the form

|Ψ1〉f =
∞∑

n=0

Cn,n(f1, f2)|n, n〉, (2.15)

it is straightforward to find the expression

|Ψ1〉f = N1

∞∑
n=0

(eiφ tanh r)n(f1(n)!)(f2(n)!)|n, n〉, (2.16)

where ξ = eiφ tanh r and N1 the normalization constant, and has the form

N−2
1 =

∞∑
n=0

(tanh r)2n[(f1(n)!)(f2(n)!)]2. (2.17)

Generally, there is a number of NTMSVS’s corresponding to various choices of the nonlinearity functions.
Noting that the normalization constant in this case of the non-unitary nonlinear functions, depends on the
values of these functions, that insures its boundedness.
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3. NTMSVS as a realization of SU(1,1) Lie algebra

The physical quantities observed experimentally in many optical effects based on emission and absorption
photons can be associated with the creation a+ and annihilation a operators. Optical effects connected with
the two-photon physics, are often related to the SU(1,1) Lie group [34–42]. it has been shown that the single-
and two-mode bosonic realizations of the SU(1,1) Lie algebra have immediate relevance to the nonclassical
squeezing properties of light [34–43].

3.1. The standard states

First we briefly review the realization two-mode standard case. The squeezed vacuum realization of the
SU(1,1) Lie group is considered by taking the K-operators in the form

K+ = a+b+, K− = ab, K3 =
1
2
(Na + Nb + I). (3.1)

In this case the boson number difference between the two modes is conserved. The dynamics of the nonde-
generate parametric amplifier is described by (3.1) [13]. This two-mode representation of the SU(1,1) Lie
algebra plays an important role in the description of linear dissipative processes [40].

The Casimir operator in this case becomes K2 = K2
3 − 1

2 (K+K− + K−K+) equal 1
4 [(Na − Nb)2 − I].

Therefore, the irreducible representation with k = (1+q)
2

, where q = 0, 1, 2, . . ., is the eigenvalue of the
difference between the number of quanta in modes one and two, i.e., Na −Nb, [42]. Here, |m, k〉 = |n+ q, n〉,
and n = 0, 1, 2, . . . [42]. The corresponding SU(1,1) Lie algebra CS or Perelomov CS for the two-mode field,
written in terms of the two mode number states takes the form [42]

|ξ, k =
(1 + q)

2
〉 =

∞∑
n=0

Cq
n|n + q, n〉, (3.2a)

where

Cq
n = (1 − |ξ|2)1/2(1+q)[

(n + q)!
n!q!

]1/2ξn. (3.2b)

For the special case q = 0 this is the TMSVS. For q not equal 0 it is the state obtained by the action of the
two-mode squeeze operator on the number state |q, 0〉.

The squeeze operator

S(z) = exp (zK+ − z∗K−) = exp (za+b+ − z∗ab) (3.3)

is the unitary group operator for the two-photon realization, where K+, K−, K3 are given by (3.1), with
ξ = z

|z| tanh |z| = eiφ tanh r.
There is another coherent state of SU(1,1) which is known as the Barut-Girardello coherent states

(BGCS’s) [46]; it is defined as the eigenstate of the lowering operator K−,

K−|α, k〉BG = α|α, k〉BG, (3.4)

and it can be expressed as

|α, k〉BG =

√
|α|2k−1

I2k−1(2|α|)

∞∑
n=0

αn√
n!Γ(n + 2k)

|n, k〉, (3.5)

where Iν(x) is the modified Bessel function of the first kind. The BGCS’s are normalized but they are not
orthogonal to each other. Note that the realization of BGCS’s is the pair coherent states [47], or correlated
SU(1,1) CS’s [42]. These states may be produced by the action of a nondegenerate parametric amplifier on
a two-mode state [42].
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3.2. The nonlinear realization

In what follows we mention the NTMSVS’s realization of the SU(1,1) Lie algebra by constructing the
K− operators in the following way [14],

K+ = [f1(Na)]+a+[f2(Nb)]+b+, K− = f1(Na)af2(Nb)b, (3.6)

where the operator valued functions f1(Na) and f2(Nb) are well behaved operator functions of the photon
number operators Na and Na. For the operator K3 to be in the form of (3.6), fi must be a unitary operator
f+

i = f−1
i , i = 1, 2. Under this condition

K3 =
1
2
(Na + Nb + 1). (3.7)

In this case the Perelomov CS which the action of the squeezing operator (3.3), with generators defined
by (3.6), on the two-mode vacuum state are the NTSVS’s. In other words, the Perelomov SU(1,1) CS are
itself the NTSVS’s. But the BGCS’s are the nonlinear pair coherent states studied in [48].

For non-unitary operator functions f1(Na) and f2(Nb), there are two non-Hermitian two-mode realization
of SU(1,1) Lie algebra in terms of the conjugate operators as follows:

K+ = A+B+, K− = af bf , and K3 =
1
2
(Na + Nb + 1) (3.8)

and
Ḱ+ = a+

f b+
f , Ḱ− = AB, and Ḱ3 =

1
2
(Na + Nb + 1). (3.9)

Consequently, the NTSVS’s are given by solutions of the eigenvalue equations

Ci|Φi〉 = 0, i = 1, 2, (3.10)

where Ci given is by (2.3). Carrying out the calculations, it is easy to find that these states are of the same
form of (2.16).

The NTSVS’s |Φi〉 may be formulated as results of applications of exponential operators on the state |0〉.
In effect it is easy to find that

|Φ1〉 = N1e
1
2 ξ1A+B+ |0〉, |Φ2〉 = Ń1e

1
2 ξ2a+

f b+
f |0〉 (3.10)

where N1 and Ń1 are the normalization constants.
However before we proceed any further it is necessary to specify the nonlinearity functions f1(n1) and

f2(n2). From equation (2.16), it is clear that for every choice of f1(n1) and f2(n2) we shall get different
NTSVS’s states. In the present case, we choose the following nonlinearity functions which have been used
in the description of the motion of a trapped ion [49], namely

fi(ni) =
L1

ni
(η2

i )
(ni + 1)L0

ni
(η2

i )
, i = 1, 2. (3.11)

Here, η is known as the Lamb-Dicke parameter and Lm
n (x) are associated Laguerre polynomials. Clearly

fi(n) = 1 when ηi = 0 in this case the states of (2.9) and (2.16) become the standard two-mode SCS’s.
However, when ηi �= 0 nonlinearity starts developing, with the degree of nonlinearity depending on the
magnitude of the parameters ηi.

In conclusion, in this work we have studied the nonlinear extension of two-mode squeezed vacuum states.
We have defined a class of nonlinear two-mode squeezed states. Some basic definitions and properties of
SU(1,1) Lie algebra have been considered. Various applications of these results in the context of the two-
photon realization of SU(1,1) in quantum optics are also considered. The NLSS’s realization of SU(1,1)
Lie group have been constructed. These states may find applications in the fields of quantum optics and
quantum information.
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