
Turk J Phys

32 (2008) , 123 – 131.

c© TÜBİTAK
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Abstract

Recently, three complex potentials V (x) = ix3, V (x) = ix3 + iαx, and V (x) = x4 + iαx have

been studied in the literature. Here, we combine these potentials in one. With the aid of the asymptotic

iteration method we have numerically calculated the eigenenergies of the new complex potential. The

obtained numerical results are compared with those obtained by using the WKB, EMM, and MRF

methods and found to be in an excellent agreement. We discuss how an adjustable parameter ζ can help

to improve our results.
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1. Introduction

Searching for eigenvalues En generated by the non-Hermitian potentials in one dimension has acquired
much interest in recent years. Bender and Boettcher [1] have suggested that instead of Hermiticity, it might
be enough to have PT -invariant potential so as to have real eigenenergies. As first potential model, Bender
and Boettcher [1] have studied the Schrödinger eigenvalue differential equation

−ψ
′′
(x) + V (x)ψ(x) = Enψ(x), (1)

where V (x) is a complex potential of the form

V (x) = ix3. (2)

In general, when one make the transformation of x → −x and i → −i, if the relation V (−x) = V ∗(x)
exists, the potential V (x) is said to be PT -symmetric. Bender and Boettcher [1] applied the Runge-Kutta
technique and the WKB approximation in the complex plane to obtain the discrete energy eigenvalues of the
PT-symmetric non-Hermitian potential (2). Bender and Boettcher [1] showed that the discrete spectrum
generated by the potential (2) should be real. Using different methods, similar investigations [2–4] have
agreed with the Runge-Kutta results. As second potential model, Delabaere and Trinh [5] applied asymptotic
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method, while Handy et al [6–7] applied the eigenvalue moment method (EMM), and multiscale reference
function (MRF) approach to calculate the eigenenergies of the potential

V (x) = ix3 + iαx, (3)

where α is a real parameter and they studied PT-invariance of the potential (3), and have shown that
such potential exhibits two types of behavior. The first type in the unbroken PT-symmetry phase, yields
real and discrete eigenenergies so long as α > αcritical. While the second type, when PT-symmetry is
spontaneously broken through the potential retains PT - symmetry, this type yields arranged eigenenergies
as complex conjugate pairs so long as α < αcritical. As a third potential model, Bender et al [8], Delabaere
and Pham [9] applied the WKB approximation method and WKB exact method to generate values for
discrete eigenenergies states of the PT -symmetry non- Hermitian potential

V (x) = x4 + iαx, (4)

where α is a parameter value. Bender et al [8] showed that at critical α-parameter values, various real
eigenvalue curves intersect (i.e. the first two discrete starts at α ≈ 3.169053, the next two at α ≈ 7.62595),
making the onset of complex-E discrete state formation. Moreover, further study of potential (4) has been
done by Handy et al [10] who used the EMM to generate the low-lying bound states for the potential (4).

Recently, the asymptotic iteration method (AIM) has been introduced by Ciftci et al [11] for solving the
eigenvalue problem. They showed that the AIM yields the correct answer for exactly solvable models and
gives reasonable approximation results for some nontrivial one-dimensional problems such as anharmonic
oscillators and singular potentials. Furthermore, the AIM handles En with large n which are used to pose
many numerical instabilities to some of the previously mentioned methods. In this study, we will combine
the above three potentials in a single new complex potential, for which the eigenvalues En of each one of the
three potentials above can be calculated through new single complex potential for each one. Therefore, the
main aim of the present paper is to use the AIM to formulate algebraic approach within the new complex
potential to calculate the eigenenergies to the high degree of accuracy for the complex potentials (2), (3),
and (4).

The organization of the present article is as follows. In Sect 2, we define our complex potential which
includes the aforesaid three potentials. In section 3, we give a brief review of AIM method to obtain
numerically the eigenenergies. In section 4, numerical results and discussion of ground state and excited
states are given. Finally, in section 5, the respective discussion and summary of our numerical results are
presented.

2. The Formalism of a New Complex Potential

In this section we will build a complex potential which includes the potentials (2), (3), and (4). Under
some constraints on the parameters values of the new complex potential, the use of the new potential
representation will be able to combine the three complex potentials. To achieve this, we introduce the new
complex potential as:

V (x) = γx4 + iβx3 + iαx, (5)

where, at least one of the parameters α, β, and γ must equal zero, and, only one of them must equal one.
Thus, the formalism of potential (5) allows us to obtain the potentials (2), (3), and (4). We shall now

determine the potentials corresponding to various values of the parameters α, β, and γ as follows:
Case 1: Let α = γ = 0, and β = 1. In this case we have a potential similar to the potential (2).
Case 2: Let γ = 0, and β = 1. In this case we have a potential similar to the potential (3).
Case 3: Let β = 0, and γ = 1. In this case we have a potential similar to the potential (4).
Therefore, by applying the AIM we will show that potential (5) can be used to calculate the eigenenergies

of the potentials (2), (3), and (4).
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3. Asymptotic Iteration Solution to the Eigenvalue Problem

In this section we shall outline the general procedure of the AIM for determining numerical solvability
of the eigenvalue differential equation. Let us now return to the potential (5). The general form for the
eigenvalue equation with (5) is (we work in unit where � = 1)

−1
2m

ψ
′′
(x) + V (x)ψ(x) = Enψ(x). (6)

Equation (6) is defined on a certain complex curve x = x(t) ∈ C, t ∈ (−∞,∞), and {α, β, γ} ∈ R. The
full illustration for this property is available in the literature [12, 13]. For the sake of general solutions of
equation (6), we make the ansatz

ψ(x) = e−ζ
x2

2 y(x), (7)

where ζ is an adjustable parameter introduced to improve the rate of convergence of the AIM [14]. Substi-
tution of (7) into (6) gives the homogeneous linear second-order differential equation

y
′′
(x) = k0(x)y

′
(x) + z0(x)y(x), (8)

with functions k0(x) and z0(x) given by

k0(x) = 2 ζ x

z0(x) = ζ − ζ2x2 + 2 imαx + 2 imβx3 + 2 mγx4 − 2 mE.
(9)

The eigenfunctions and eigenenergies of the potential (5) may now be explicitly formulated by using the
techniques of AIM. We do not give the details of the AIM which could be found in references [11, 14-20].
Thus for some j > 0 if one can obtain a representation for ϕ(x) as

ϕj(x) =
zj(x)
kj(x)

≡ zj−1(x)
kj−1(x)

, (10)

with
kj(x) = k

′

j−1(x) + zj−1(x) + k0(x)kj−1(x),

zj(x) = z
′

j−1(x) + z0(x)kj−1(x).
(11)

Equation (10) leads to exact results after a finite number of iterations j for some trivial cases and approximate
results for nontrivial cases [11, 14]. In this case, with the help of the equations (9) and (11), one can speculate
that in some suitable large j the equation for approximate eigenenergies En can be obtain from the roots of

δj(x) = kj−1(x)zj(x) − zj−1(x)kj(x). (12)

To complete this section, it is important to mention that, the general solution of equation (8) is given
by combination of two independent fundamental solutions

y(x) = exp
(
−

∫
ϕ(x)dx

)[
C2 + C1

∫ (
exp

[∫
{k0(x) + 2ϕ(x)}dx

])
dx

]
. (13)

4. Results and Discussion

Based on the clear results in the previous section, it is possible to numerically determine the eigenenergies
En by the condition given in equation (12). It should also be pointed out that, to obtain the eigenenergies
En, the condition of the iterations should be terminated at the point by putting δj(x) terms to be zero.
As it is explicitly seen, in each iteration, the expression δj(x) = kj−1(x)zj(x) − zj−1(x)kj(x) will depend

125



SOUS

on two variables En and x. The calculated eigenenergies En by means of this condition should, however,
be dependent on the choice of x. The chosen value of x is arbitrary in principle, and affects the rate of
convergence of the method [14]. It is observed that the optimal choice of x is when x = 0. In Table 1. Test
computations were successfully performed on the potential (5) between two values of an adjustable parameter
ζ with γ = 1, β = 0, α = 315

100 . The numerical results confirm that the rate of convergence of the method yield
to best convergence rate when ζ = 4 because of a faster convergence rate of ζ = 4. We have truncated the
iterations at j = 70. Factually, convergence was achieved after j = 60 iterations. The calculated results of
� Ej

0 = Ej
0 −Ej−1

0 , shows the rate of convergence. A calculation of full perfect convergence gives �Ej
0 = 0

when j = 60. Furthermore, Table 1 shows that our value for E0 is in perfect agreement with the results of
Handy et al [10] within the first 8 digits, and our value for E0 is inside the bounds provided by the EMM. In
Tables 2–5 we give the eigenenergies En for the first four states for the potential (5) with γ = 0 and β = 1
obtained using the AIM by means of 45 iterations, and compare them with the results of Handy et al [6]
obtained by the eigenvalue moment method (EMM), and multiscale reference function (MRF) approach. It
is clear from these tables that our calculated eigenenergies En are in a good agreement with eigenenergies

Table 1. AIM, MRF, and EMM eigenenergies E1 for the potential for V (x) = γx4 + iβx3 + iαx with γ = 0 and

β = 1, 2m = 1, ζ = 2.

α EAIM EMRF [7] EEMM [7]

-5 1.343343304 - 2.907390643 i 1.3433409 ± 2.9073602 i 1.343311 (1.343354)+ 2.9073 (2.9075) i

− 9
2

1.29924235822265 - 2.31251547361173 i 1.2992519 ± 2.3124924 i 1.299242 (1.299252) + 2.3124 (2.3126) i

-4 1.248656742 - 1.761719301 i 1,2486637 ± 1.7617076 i 1.248637 (1.248666) + 1.761688 (1.761742) i

− 7
2

1.212436734 - 1.260909973 i 1.2124399 ± 1.2609114 i 1.212421 (1.212448) + 1.26088 (1.26094) i

-3 1.225847578 - .7600224709 i 1.2258438± .7600296 i 1.225837 (1.225864) + .76000 (.76004) i

− 5
2

.9280003422 .9280136 .92799980 (.92800101)

-2 .6209135740 .6209137 .62091347 (.62091386)

− 3
2

.5964933841 .5964936 .59649326 (.59649351)

-1 .6999599208 .6999615 .69995977 (.69995978)

− 1
2

.8926684336 .8926699 .89266872 (.89266849)

0 1.156267072 1.1562673 1.15626695 (1.15626718)

1
2

1.479851861 1.4798519 1.47985179 (1.47985206)

1 1.856110766 1.8561128 1.85611065 (1.85611108)

3
2

2.279752048 2.2797563 2.27975185 (2.27975232)

2 2.746739981 .2.7467434 2.74673952 (2.74674023)

5
2

3.253876926 3.2538767 3.25387596 (3.25387723)

3 3.798554701 3.7985559 3.79855387 (3.79855395)

7
2

4.378596946 4.3786140 4.37859645 (4.37859736)

4 4.992154083 4.9921974 4.99215436 (4.99215504)

9
2

5.637630446 5.6376822 5.63763149 (5.63763200)

5 6.313632040 6.3136428 6.31359739 (6.31360665)
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Table 2. AIM, MRF, and EMM eigenenergies E2 for the potential for V (x) = γx4 + iβx3 + iαx with γ = 0 and

β = 1, 2m = 1, ζ = 2.

α EAIM EMRF [7] EEMM [7]

-5 1.343343304 + 2.907390643 i 1.3433409 ± 2.9073602 i 1.343311 (1.343354)+ 2.9073 (2.9075) i

− 9
2

1.299242358 + 2.312515474 i 1.2992519 ± 2.3124924 i 1.299243 (1.299252) + 2.3142 (2.3126) i

-4 1.248656742 + 1.761719301 i 1,2486637 ± 1.7617076 i 1.248637 (1.248666) + 1.761688 (1.761742) i

− 7
2

1.212436734 + 1.260909973 i 1.2124399 ± 1.2609114 i 1.212421 (1.212448) + 1.26088 (1.26094) i

-3 1.225847578 + .7600224709 i 1.2258438± .7600296 i 1.225837 (1.225864) + .76000 (.76004) i

− 5
2

1.685979343 1.6859358 1.68597765 (1.68598087)

-2 2.292292501 2.2922626 2.29229055 (2.29229333)

− 3
2

2.742529394 2.7425268 2.74272667 (2.74253034)

-1 3.179715777 3.1797220 3.17971312 (3.17971750)

− 1
2

3.632074462 3.6320373 3.63207237 (3.63207767)

0 4.109228753 4.1091279 4.10922704 (4.10923558)

1
2

4.614838727 4.6147402 4.61483391 (4.61484633)

1 5.150168955 5.1501688 5.15016059 (5.15017640)

3
2

5.715408707 5.7154576 5.71538438 (5.71541649)

2 6.310238361 6.3100192 6.31020527 (6.31025282)

5
2

6.934096041 6.9332376 6.93405453 (6.93412954)

3 7.586310989 7.5850094 7.58627841 (7.58638028)

7
2

8.266172869 8.2656580 8.26613065 (8.26633647)

4 8.972968434 8.9745543 8.97272640 (8.97332836)

9
2

9.706000860 9.7077326 9.70210565 (9.70789436)

5 10.46459958 10.4575130 10.45227656 (10.48006875)

En calculated with other methods [6]. As special case in Tables 2 − 5, it is important to note that in the
case of α = 0 the results are actually in reasonable agreement with the results in [1, 4, 6] for the potential
(2). In the preceding tables we have calculated the eigenenergies only for the first four states. This was in
order to make comparison between the AIM and the results of [1, 4, 6]. Actually by using this method we
can extend our calculated eigenenergies for the highest excited states. Finally, by trial and error, we found
that the faster rate of convergence in Tables 2-5 is that when ζ = 2. Moreover, if we use αcrit directly
from [7], the AIM can be used to calculate the eigenenergies for αcrit. It gives a good approximation for the
eigenenergies Ecri1,2 . At these critical points given by [7] the energy goes from being real (PT - invariant
solutions) to complex (PT - breaking solutions). They are

αcr1 = −2611809356
1000000000 (γ = 0, β = 1) corresponding to Ecr1 = 1.28274561544057, and

αcr2 = −5375879629
1000000000

(γ = 0, β = 1) corresponding to Ecr2 = 4.18128166000600.
These eigenenergies result which calculated by means of 70 iterations, and with ζ = 2 are in general

agreement with the earlier calculation [7]. In Tables 6 and 7, we present the first four energy levels for
potential (4) (i.e. Potential (5) with β = 0, and γ = 1) for different values of α, and with adjustable
parameter ζ = 4. These results are in agreement with previously reported results [10]. For the critical points
(αcrit1,2) it is found that the AIM works very well and gives results of good accuracy. We have calculated the
eigenenergies for the potential (5) by means of 60 iterations. Other eigenenergies for higher excited states
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Table 3. AIM, MRF, and EMM eigenenergies E3 for the potential for V (x) = γx4 + iβx3 + iαx with γ = 0 and

β = 1, 2m = 1, ζ = 2.

α EAIM EMRF [7] EmEMM [7]

− 15
2

4.410337852 - 3.266538423 i 4.4103093 ± 3.2664292 i 4.408662 (4.411426) + 3.2645 (3.2700) i

-7 4.312023756 - 2.563558451 4.3120349 ± 2.5634751 i 4.310530 (4.313107) + 2.5618 (2.5674) i

− 11
2

4.157476964 - .5313530951 i 4.1575135 ± .5313291 i 4.155648 (4.158235) + .5300 (.5370) i

-5 3.431382846 3.4314015 3.43136741 (3.43139540)

-4 3.508765600 3.5087615 3.50876099 (3.50877544)

− 7
2

3.877693006 3.8776981 3.87768485 (3.87770178)

-3 4.333439839 4.3334536 4.33342275 (4.33344654)

− 5
2

4.822975397 4.8229806 4.82294849 (4.82298427)

− 3
2

5.857622002 5.8576148 5.85759578 (5.85766576)

− 1
2

6.971403910 6.9714613 6.97133951 (6.97152763)

0 7.562273855 7.5622889 7.56215901 (7.56242355)

1
2

8.177082532 8.1770143 8.17687201 (8.17720644)

3
2

9.479889209 9.4802011 9.47913594 (9.48044230)

5
2

10.88022600 10.8807993 10.87896180 (10.88253390)

3 11.61644566 11.6159802 11.61535000 (11.62075000)

7
2

12.37627694 12.3755952 12.37090000 (12.38980000)

Table 4. AIM, MRF, and EMM eigenenergies E4 for the potential for V (x) = γx4 + iβx3 + iαx with γ = 0 and

β = 1, 2m = 1, ζ = 2.

α EAIM EMRF [7] EEMM [7]

− 15
2

4.410337852 + 3.266538423 i 4.4103093 ± 3.2664292 i 4.408662 (4.411426) + 3.2645 (3.2700) i

-7 4.312023756 + 2.563558451 i 4.3120349 ± 2.5634751 i 4.310530 (4.313107) + 2.5618 (2.5674) i

− 11
2

4.157476964 + .5313530951 i 4.1575135 ± .5313291 i 4.155648 (4.158235) + .5300 (.5370) i

-5 5.167890381 5.1678291 5.16784214 (5.16798149)

-4 6.379805337 6.3796826 6.3796997 (6.37985480)

− 7
2

6.949052345 6.9490904 6.94880880 (6.94915872)

-3 7.525191974 7.5252398 7.52489539 (7.52536568)

− 5
2

8.113377228 8.1130836 8.11302413 (8.11368768)

− 3
2

9.337028960 9.3364444 9.33658547 (9.33774669)

− 1
2

10.63501627 10.6352870 10.63343056 (10.63660576)

0 11.31442183 11.3120046 11.31165120 (11.31588480)

1
2

12.01482436 12.0072541 12.01004000 (12.01676000)

3
2

13.47956320 13.4761039 13.47000000 (13.51500000)

5
2

15.02983115 15.0088412 14.96800000 (15.22000000)

3 15.83682846 15.8347839 15.71250000 (16.12500000)

7
2

16.66484822 16.4020563 16.40000000 (17.00000000)
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can be obtained by AIM. The accuracy of the results for higher excited states can be increased if the number
of iterations are increased.

Table 5. The comparison of the AIM results (present work) with the eigenvalue moment method [10] for the first

four eigenenergies states En of the potential V (x) = γx4 + iβx3 + iαx, with γ = 1 and β = 0, 2m = 1, ζ = 4.

α n EAIM EEMM [10]
0 0 1.06036209048429 1.06036209048168 < ER < 1.06036209049133

0 1 3.79967302979615 3.79967302969810 < ER < 3.79967303009943

0 2 7.45569793797516 7.45569793646236 < ER < 7.45569794450762
0 3 11.6447455106200 11.6447454124944 < ER < 11.6447455916097
1
2 0 1.09346613918847 1.09346613915868 < ER < 1.09346613919601
1
2 1 3.80350288034512 3.80350288028026 < ER < 3.80350288067461
1
2 2 7.46085427096371 7.46085426922425 < ER < 7.46085427717100
1
2

3 11.6488362016166 11.6488361053757 < ER < 11.6488362844910

1 0 1.19448994170113 1.19448994169622 < ER < 1.19448994171063

1 1 3.81335726488546 3.81335726478537 < ER < 3.81335726521582

1 2 7.47632956052414 7.47632955885712 < ER < 7.47632956659295
1 3 11.6610744929874 11.6610743806709 < ER < 11.6610745841871

2 0 1.63073079429846 1.63073079428893 < ER < 1.63073079431949

2 1 3.82146752822032 3.82146752813636 < ER < 3.82146752871907
2 2 7.53864646294889 7.53864645991553 < ER < 7.53864647040870

2 3 11.7095061015968 11.7095059093736 < ER < 11.7095062316998

3 0 2.62269905717768 2.62269905710335 < ER < 2.62269905727884

3 1 3.57016001805762 3.57016001789298 < ER < 3.57016001884370
3 2 7.64703040600171 7.64703040200832 < ER < 7.64703041484659

3 3 11.7882106757446 11.7882103641407 < ER < 11.7882108662897
31
10 0 2.83473212726125 2.83473212710682 < ER < 2.83473212740229
31
10 1 3.44820508453984 3.44820508436344 < ER < 3.44820508538680
31
10

2 7.66094518361486 7.66094518003906 < ER < 7.66094519223550
31
10 3 11.7976221025666 11.7976217616381 < ER < 11.7976223168970
315
100 0 3.00238802243326 3.00238802194582 < ER < 3.00238802269777
315
100 1 3.32665289150960 3.32665289127798 < ER < 3.32665289269236

3169035
1000000

0 3.17213028319439 3.17213027251438 < ER < 3.17213028512914
3169035
1000000 1 3.17464778299582 3.17464778126365 < ER < 3.17464779415344

4 3 7.82259326851421 7.82259326098411 < ER < 7.82259328224012
4 4 11.8932109128598 11.8932103468105 < ER < 11.8932112547331
15
2 3 10.6834000768055 10.6833991858115 < ER < 10.6834037179701
15
2 4 11.7968384964128 11.7968288611545 < ER < 11.7968421504399

762595
100000 3 11.3225647499793 11.3225381250000 < ER < 11.322588750000
762595
100000

4 11.3326538497117 11.3326241250000 < ER < 11.3326815000000
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Table 6. The rate of convergence of the AIM for the ground state for the potential V (x) = γx4 + iβx3 + iαx with

γ = 1 and β = 0, α = 315
100 , 2m = 1, computed with the number of iterations j, and adjustable parameters ζ.

j ζ = 4 ζ = 10
10 2.61684744410 2.25842726026
15 3.03674827652 2.09217288918
20 2.99968354661 2.06321508736
25 3.00277094849 2.341847450149
30 3.00237215980 2.55750350450
35 3.00239129801 2.84082979465
40 3.00238787452 2.93920420595
45 3.00238805578 3.01184012366
50 3.00238802113 3.00453029145
55 3.00238802273 3.00592377706
60 3.00238802243 3.00314374817
65 3.00238802243 3.00276595513
70 3.00238802243 3.00245768578

Table 7. AIM analysis of PT -breaking , eigenenergies states for the potential V (x) = γx4 + iβx3 + iαx with γ = 1

and β = 0, 2m = 1, ζ = 4.

α n EAIM
317
100 0 3.17383999378883 - .0365788783495440 i
317
100 1 3.17383999378883 + .0365788783495440 i
4 0 3.60823547436812 - 1.20126056694566 i
4 1 3.60823547436812 + 1.20126056694566 i
9
2 0 3.91030340672228 - 1.63057737830328 i
9
2 1 3.91030340672228 + 1.63057737830328 i
5 0 4.23609820377638 - 2.05375358249030 i
5 1 4.23609820377638 + 2.05375358249030 i
11
2 0 4.57883695710143 - 2.48824405330136 i
11
2 1 4.57883695710143 + 2.48824405330136 i
6 0 4.93227254413298 - 2.93964641030454 i
6 1 4.93227254413298 + 2.93964641030454 i
13
2

0 5.29209457646892 - 3.40834468881720 i
13
2 1 5.29209457646892 + 3.40834468881720 i
7 0 5.65617719444392 - 3.89285630348179 i
7 1 5.65617719444392 + 3.89285630348179 i
15
2

0 6.02387797390366 - 4.39156838389473 i
15
2

1 6.02387797390366 + 4.39156838389473 i
763
100 0 6.12006858536678 - 4.52340252719549 i
763
100 1 6.12006858536678 + 4.52340252719549 i
763
100 2 11.3304673162269 - .101034029059563 i
763
100

3 11.3304673162269 - .101034029059563 i

5. Conclusion

In the present paper we combined three known complex potentials in one, then we use the new formed
complex to calculate the eigenenergies of the original three potentials by using AIM. The new potential
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can be used to calculate the eigenenergies of the original three complex potentials separately, but certain
constraint relations must be taken in consideration. The calculated eigenenergies by means of a new complex
potential are in good agreement with the results obtained by the other methods.
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