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Abstract

Temperature dependence of ultrasonic attenuation due to phonon-phonon interaction and thermo-

elastic loss have been studied in (CsCl-type) barium monochalcogenides (BaX , X= S, Se, Te), in the

temperature range 50–500 K; for longitudinal and shear modes of propagation along <100>, <110> and

<111> directions. Second and third order elastic constants have been evaluated using electrostatic and

Born repulsive potentials and taking interactions up to next nearest neighbours. Gruneisen parameters,

nonlinearity constants, nonlinearity constants ratios and viscous drag due to screw and edge dislocations

have also been evaluated for longitudinal and shear waves at 300 K. In the present investigation, it

has been found that phonon-phonon interaction is the dominant cause for ultrasonic attenuation. The

possible implications of the results have been discussed.
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1. Introduction

Among wide band gap II-IV semiconductors, barium chalcogenides (BaX, X=S, Se, Te) are interesting
in connection with optoelectronic applications involving blue light wavelength. Barium Chalcogenides form
very important closed shell ionic systems crystallized in the NaCl (B1) type and CsCl (B2) type structures at
ambient conditions. Alkaline earth chalcogenides are currently under intense investigations driven by their
applications in light emitting diodes (LEDs) and laser diodes (LDs). It is expected that these compounds
may provide new II-IV candidates for the fabrication of various electrical and optical devices [1, 2].

Experimental as well as theoretical work on different aspects of these compounds has been reported
in the recent past [1–4]. No results are available on temperature dependent acoustical behavior of these
chalcogenides viz. on ultrasonic attenuation due to phonon-phonon interaction, thermo-elastic loss, dislo-
cation damping, Gruneisen parameter, non-linearity parameters and thermal relaxation time etc, which are
very important to explain the microstructure and other related physical properties of these alkaline earth
chalcogenides. In the present communication, second and third order elastic constants (obtained at dif-
ferent temperatures) have been used to evaluate Gruneisen parameters and non-linearity parameters along
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different crystallographic directions viz. <100>, <110> and <111> for longitudinal and shear modes in
the temperature range 50 K–500 K. Taking electrostatic and Born repulsive potentials and utilizing some
parameters viz. nearest neighbours distance, hardness parameter; ultrasonic attenuation coefficients have
been calculated at different temperatures.

2. Theory

2.1. Second and third order elastic moduli

Second and third order elastic constants (SOEC’s and TOEC’s), C0
ij and C0

ijk at 0 K have been obtained
using electrostatic and Born-Mayer potentials and following Brugger’s [5] definition of elastic constants.
Repulsive parameter and nearest-neighbor distance have been used as input data and interaction up to next
nearest-neighbours has been considered. According to Brugger’s definition, nth order elastic constant is
defined as

Cijklmn..... = (∂nu/∂εij∂εkl∂εmn · · ·) . (1)

For cubic crystals three independent SOEC’s (C11, C12 and C44) and six independent TOEC’s (C111, C112,
C144, C166, C456 and C123) occur. Using the theory discussed in [5, 6], SOEC & TOEC viz. C0

ij and C0
ijk

obtained at 0 K are given as
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where the lattice sums are

S0
1 = −Z0 = −1.017678, S

(2)
5 = 0.354190, S

(1,1)
5 = 0.346708,

S
(3)
7 = 0.540901, S

(2,1)
7 = −0.093356, S

(1,1,1)
7 − 0.16000

and
r1 =

√
3r0, r2 = 2r0.

According to lattice dynamics developed by Ludwig et al [7], temperature variation of SOEC and TOEC
have been obtained by adding vibrational contribution to elastic constants, that is,

Cij(T ) = C0
ij + Cvib.

ij (2)

Cijk(T ) = C0
ijk + Cvib.

ijk (3)

Where Cvib.
ij and Cvib.

ijk are vibrational contribution to elastic constants. Explicity expressions for SOEC and
TOEC at required temperature are given in [6]
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2.2. Theory of acoustic attenuation

In the Akhiezer regime [8] (ωτ � 1) a sound wave passing through a solid can be attenuated by two
processes. First, if the wave is longitudinal, periodic contractions and dilations in the solid induce a tem-
perature wave via thermal expansion. Energy is dissipated by heat conduction between regions of different
temperatures. This is called thermoelastic loss. Second, dissipation occurs as the gas of thermal phonons
tries to reach an equilibrium characterized by a local (sound wave induced) strain. This is the internal
friction mechanism.

The physical basis for obtaining attenuation coefficient is that the elastic constants contributed by thermal
phonons relax [9-11]. The phonon contribution to the unrelaxed elastic constants is evaluated by taking
into consideration the change in energy of the thermal phonons due to applied instantaneous strain. The
frequency of each mode νi is changed by ∂νi

νi
= −γj

i Sj , where γj
i is generalized Gruneisen parameter and

Sj is instantaneous strain. It is assumed that all the phonons of a given direction of propagation and
polarization have equal change in frequency. Then phonons of ith branch and jth mode suffer a change in
temperature ΔTi

T0
= −γj

i Sj , where T is temperature. A relaxed elastic constant is obtained after there is
phonon-phonon coupling among various branches and the ΔTi relax to a common temperature change,ΔT

given byΔT
T

= −〈 γj
i 〉Sj ; where 〈 γj

i 〉 is the average value ofγj
i . Thermal relaxation time [11–13],

τ = τs =
τl

2
=

3K

Cv < V >2
, (4)

Where K is thermal conductivity, Cv is specific heat per unit volume and < V > is the Debye average
velocity.

According to Mason and Batemann [11, 13], SOEC’s and TOEC’s are related by Gruneisen parameter
γj

i and hence by non-linearity parameter D. Ultrasonic attenuation due to phonon-phonon interaction in
Akhiezer regime (ωτ << 1) is given by [11–13]
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2π2f2DlE0τl

3dV 3
l

(5)
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2π2f2DsE0τs

3dV 3
s

, (6)

where non-linearity coupling constant [11–13]
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are the square average and average square Gruneisen parameters, respectively; V

is sound wave velocity, (Vl) for longitudinal waves and (Vs) for shear waves and d is density.
Propagation of sound wave through crystal produces compression and rarefactions as a result heat are

transmitted from compressed region (at higher temperature) to rarefied region (at lower temperature) and
hence thermoelastic loss occurs, which is given by.
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Debye average velocity is given by
3
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The Debye temperature is given by [14]
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ΘD = � < V > qd/kB, (10)

where is < V > Debye average velocity, kB is Boltzmann constant and
qd = (62Na)1/3, where Na is atom concentration.
Dislocation damping due to screw and edge dislocations also produces appreciable loss due to phonon-

phonon interaction. The loss due to this mechanism can be obtained by multiplying dislocation viscosities
by square of dislocation velocity. Dislocation damping due to screw and edge dislocations is given by [15]

Λscrew = 0.071η (11a)

Λedge = 0.053η/(1− σ2) + 0.0079/(1− σ2)(μ/B)χ, (11b)

where

χ = ηl − (4/3)ηs, ηl = E0Dlτ/3, ηs, = E0Dsτ/3

B = (C11 + 2C12)/3, μ = (C11 − C12 + C44)/3

and

σ = C12/(C11 + C12),

where B, μ, η, σ and χ are the bulk modulus, shear modulus, phonon viscosity, Poisson’s ratio and com-
pressional viscosity respectively; and Cij’s are second order elastic constants.

3. Result and Discussion

Second and Third order elastic constants (SOEC’s and TOEC’s) have been evaluated at different tem-
peratures, taking lattice parameters from references [1–3] and hardness parameters 0.691 Å, 0.699 Å and
0.622 Å for BaS, BaSe and BaTe respectively, using the equations (2) and (3). Evaluated SOEC values are
shown in Table 1 and compared with SOEC’s values obtained by Local Density Approximation (LDA) and
Generalized Gradient Approximation (GGA) model [1-3]. They are in good agreement with others except
minor disagreement in C12 and C44 values, which may be attributed to lattice and hardness parameters used
by us.

Table 1. Second order elastic constants (1012 dyne/cm2) at 300 K.

Compound Model C22 C12 C44

BaS
Present 1.13 0.04 0.03
GGA 1.05a 0.11a 0.10a

LDA 1.31a 0.13a 0.11a

BaSe
Present 1.12 0.03 0.90
GGA 0.97a 0.10a 0.90a

LDA 1.13a 0.12a 0.11a

BaTe
Present 1.10a 0.02a 0.02a

GGA 0.80a 0.07a 0.03a

LDA 0.95a 0.12a 0.42a

a: ref. [2].
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Square average Gruneisen number (< γj2
i >) and average square Gruneisen number (< γj

i >2), acoustic
coupling constants D for longitudinal and shear wave and their ratios Dl/Ds, and Dl/Ds* along different
directions of propagation and polarization are given in Table 2. Results are as expected [13, 16–18]. Viscous
drag coefficients due to screw (Λscrew) and edge dislocation (Λedge) have been evaluated using equations
(11a) and (11b), as given in Table 3.

Table 2. Square Average and average square Gruneisen number for longitudinal < γj2
i >l, < γj

i >2
l and shear <

γj
i >2

s,< γj
i >2

s∗ Waves, nonlinearity coupling constants Dl , Ds and nonlinearity coupling constants ratios Dl/Ds ,

Dl / Ds* at 300 K.

Compoun-d Direction < γj2
i >l < γj

i >2
l < γj

i >2
s < γj

i >2
s∗ Dl Ds D s∗ Dl /Ds Dl/Ds∗

BaS
100 0.94 0.17 0.04 – 7.82 0.37 – 20.81 –

110 1.06 0.26 0.15 1.93 8.63 1.43 17.37 6.03 0.49

BaSe
100 0.90 0.24 0.04 – 7.27 0.43 – 16.79 –

110 1.04 0.36 0.22 1.80 8.04 1.98 16.28 4.06 0.49

BaTe
100 1.68 1.28 0.30 – 10.63 2.73 – 3.88 –

110 2.14 1.75 4.49 1.33 12.93 40.46 12.00 0.31 1.00
lfor longitudinal wave
sfor shear wave, polarized along [001]

s∗for shear wave, polarized along [1
−
1 0]

Table 3. Viscous drag coefficient due to screw and edge dislocation at 300 K longitudinal (in cp) and shear (in mp.)

waves.

compound Λscrew (cp) Λedge (cp)
Long. Shear Long. Shear

BaS 0.23 0.10 0.45 0.55
BaSe 0.29 0.17 0.60 0.79
BaTe 0.47 1.30 1.07 3.22

The ultrasonic attenuation due to phonon-phonon interactions for longitudinal, (α/f2)l and shear waves,
(α/f2)s are evaluated using equations (5) and (6). The temperature variation of (α/f2)land (α/f2)s along
[100], [110] and [111] directions of propagation are shown in Figures (1)–(2) and ultrasonic attenuation due
to thermoelastic loss (α/f2)th, evaluated using equation (8) is shown in Figure 3. Thermal relaxation time
is evaluated using equation (4). Temperature variation of thermal relaxation time is shown in Figure (4),
which shows exponential decay according to relation τ = τo exp(−t/T ), where τo and t are constants.
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Figure 1. Temperature variation of (α/f2)l along dif-

ferent directio directions.

Figure 2. Temperature variation of (α/f2)s along dif-

ferent direction directions.
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The attenuation due to phonon-phonon interaction for longitudinal and shear waves (α/f2)l , (α/f2)s

increase up to ΘD and then become constants. When (ΘD/T ) ≥ 1, (α/f2)l and (α/f2)s increase and
for values of temperature satisfying (ΘD/T ) <1, attenuation becomes nearly constant, because [(α/f2)lor
(α/f2)s] due to p-p interaction is mainly affected by the specific heat, Cv (since (α/f2) due to phonon-
phonon interaction is related to Cv, through the relaxation time). For (ΘD/T ) ≥ 1, Cv increases and
becomes nearly constant for the values satisfying (ΘD/T ) <1 (see Figure 5).
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Figure 3. Temperature variation of (α/f2)th along

diffrent direction.

Figure 4. Temperature variation of thermal relaxation

time, τ .
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Figure 5. Temperature variation of specific heat, Cv .

(α/f2)th is directly proportional to thermal conductivity K, which depends on specific heat Cv and
thermal relaxation time (see equation (4)). In low temperature range 50 K–200 K, compressional regions
are at higher temperature and the rarefied regions are at low temperature, thus heat is transferred from
compressional regions to rarefied regions resulting thermoelastic loss occurs. Thermoelastic loss increases
in lesser temperature range 50 K–200 K, and then decreases slowly in the higher temperature range 200
K–500 K.

The value (α/f2) is minimum for BaS and maximum for BaTe. The (α/f2) depends upon Debye
temperature (since ΘD/T is taken as function of Cv and Eo). The Debye temperature is maximum for BaS
and minimum for BaTe (ΘD =200 K, 170 K and 143 K for BaS, BaSe and BaTe respectively, evaluated
using equation (10)).Thus greater the Debye temperature, smaller will be attenuation. Debye temperature
depends on the Debye average velocity < V > and molecular weight, M−1/3 through (N/V )1/3 where N is
Avogadro number and V (V = M/d, M= mol. Wt. and d= density) is volume. < V > is maximum for
BaS and minimum for BaTe (< V > = 4.18, 2.61 and 2.39 Km/sec respectively). Therefore larger < V >,
smaller will be attenuation. Debye average velocity, < V > decreases with increasing the molecular weight
in these chalcogenide series due to increasing anion weight. The ΘD and < V > are SOEC,s dependent [14]
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(equation (9) and (10)). Thus the increase in the value of (α/f2)l, (α/f2)s and (α/f2)th from BaS to BaTe
is mainly influenced by SOEC’s values and Molecular weight.

Temperature variation of Dl and Ds along [100] and [110] directions of propagation are shown in Figures
6–9. Figures 6–9 depict that Dl increases with temperature and Ds decreases with temperature at small rate.
This increase of Dl, increases the phonon viscosity which creates a greater resistance against the motion of
moving dislocation for longitudinal wave. Value of D is amount of acoustical energy converted into thermal
energy, which increase with temperature for longitudinal wave and decrease for shear wave.

On the basis of above discussion, we can say that attenuation in longitudinal wave is produced by phonon-
phonon interaction, thermoelastic loss, dislocation damping and resistance created by Dl. On other hand
attenuation in shear wave is produced by phonon-phonon interaction and dislocation damping.
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Figure 6. Temperature variation of Acoustic coupling

constant, Dl for longitudinal wave along [100] direction.

Figure 7. Temperature variation of Acoustic coupling

constant, Dl for longitudinal wave along [110] direction.
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Figure 8. Temperature variation of Acoustic coupling

constant, Ds for shear wave along [100] direction.

Figure 9. Temperature variation of Acoustic coupling

constant, Ds for shear wave along [110] direction.
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