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Abstract

In this paper we discuss the nonlinear Klein-Gordon equation and we derive the new traveling wave

solutions by applying trigonometric function series method. Also, they are complex linear combinations

of kink solitary wave solutions and bell solitary wave solutions.
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1. Introduction

It is well known that traveling wave solutions of Nonlinear Partial Differential Equations (NPDEs)
play an important role in the study of nonlinear wave phenomena. The wave phenomena are observed
in fluid dynamics, plasma, elastic media, optical fibres, etc. Moreover, the wave phenomena are modeled
by kink-shaped tanh solutions and bell-shaped sech solutions in physics. Most important, the NPDE is
a Klein-Gordon equation equation (K-G) which arises in many fields such as nonlinear optics, Josephson
array, ferromagnetic materials, charge density waves, and liquid helium and it has periodic solution, soliton
solution of the helical wave and the kink form wave. It can be solved by means of inverse scattering method
[1]. The K-G equation reads in the form

utt − uxx + sin u = 0. (1)

In past decades, both mathematicians and physicists have made significant progress in seeking traveling
wave solutions for NPDE. A comprehensive account of traveling wave solutions to the S-G equation can be
found in papers by P. Rosenau and J. M. Hyman [1]; A. C. Scolt, F. F. Chu and D. W. Mclaughlin [2]; M. J.
Ablowitz, D. J. Kaup, A. C. Newell and H. Segar [3]; R. K. Dodd et al. [4]; and M. J. Ablowitz and P. A.
Clarkson [5].

As we all know, there are many methods to study the exact solutions to NPDEs, such as method of
symbolic computation [6], the homogeneous balance method [7–9], the tanh and extended methods [10–14],
the Lax pairs representation method [15–16], the formal variable separation approach [17], the variation of
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parameters approach [18], the special truncated expansion method[19], the Adomian decomposition method
[20], Jacobi elliptic function expansion method [21–23], and so on.

Some types of NPDE solutions, such as the K-G equation, have Hamiltonian structure and are completely
integrable. Physically, this would give rise to an ideal model, such as for quasi-particle currents.

In this paper, we consider the nonlinear K-G equation as

utt − uxx + αu − βu3 = 0, (2)

where α, β are constants. Equation (1.2) describes the propagation of dislocations within crystals, the Bloch
wall motion of magnetic crystals, the propagation of a “splay wave” along a lied membrane, the unitary
theory for elementary particles and the propagation of magnetic flux on a Josephson line, etc. [1].

In this letter, we apply a new method, using trigonometric series, which is most effective straightforward
method to deal with NPDEs. Therefore, it is important to develop a simple and direct method for obtaining
traveling wave solutions to the nonlinear K-G equation (1.2).

2. New Explicit Solutions

We introduce the trigonometric series method to seek new explicit solutions and we seek its explicit
solution in the form

u(x, t) = φ(ξ), ξ = k(x − ct), (3)

where k and c are the wave number and wave speed, respectively. According to the trig-function series
method [8, 24], we suppose that equation (1.2) has the traveling wave solution

φ(ξ) =
i=n∑
i=1

sini−1 ω(ai sin ω + ai cosω) + a0, (4)

and
dω

dξ
=

√
1 − m2 sin ω. (5)

By [25], taking i = 1 in the above formula, we have the formal solutions

φ(ξ) = a0 + a1 sin ω + b1 cosω, (6)

and target equation
dω

dξ
=

√
1 − m2 sin ω.

Substituting (2.1) into (1.2), we obtain the ordinary differential equation (ODE)

k2(c2 − 1)
d2φ

dξ2
+ αφ − βφ3 = 0. (7)

With the aid of Mathematica, from (2.4) and (2.5) we can get

k2(c2 − 1)d2φ
dξ2 + αφ − βφ3

= [αa0 − β(a3
0 + 3a0b

2
1)]

+[−k2(c2 − 1)(1 + m2)a1 + αa1 − 3β(a2
0 + b2

1)a1] sin ω

+[−k2(c2 − 1)(1 + m2)b1 + αb1 − β(3a2
0 + b2

1)b1] cosω

+[−6βa0a1b1] sinω cosω

+[−3βa0(a2
0 − b2

1)] sin
2 ω

+[2k2(c2 − 1)m2b1 − β(3a2
1 − b2

1)b1] sin2 ω cosω

+[2k2(c2 − 1)m2a1 − β(a2
1 − 3b2

1)a1] sin3 ω

= 0.
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Setting the coefficients of sinj ω cosi ω for i = 0, 1 and j = 1, 2, 3, we have the following equations for
constants a0, a1, b1, k to be determined:

αa0 − β(a3
0 + 3a0b

2
1) = 0,

−k2(c2 − 1)(1 + m2)a1 + αa1 − 3β(a2
0 + b2

1)a1 = 0,

−k2(c2 − 1)(1 + m2)b1 + αb1 − β(3a2
0 + b2

1)b1 = 0,

βa0a1b1 = 0,

βa0(a2
0 − b2

1) = 0,

2k2(c2 − 1)m2b1 − β(3a2
1 − b2

1)b1 = 0,

2k2(c2 − 1)m2a1 − β(a2
1 − 3b2

1)a1 = 0.

There are three cases for the above equations:
Case 1:

a0 = 0, a1 = 0, b1 = ±
√

− 2αm2

2m2 − 1
, k =

√
α

(2m2 − 1)(c2 − 1)
.

So, we obtain the new exact solutions of (1.2):

u = b1 cosω = ±
√

− 2αm2

2m2 − 1
cos[

√
α

(2m2 − 1)(c2 − 1)
(x − ct)].

Case 2:

a0 = 0, b1 = 0, a1 = ±
√

2αm2

m2 + 1
, k =

√
α

(m2 + 1)(c2 − 1)
.

from which we obtain the exact solutions of (1.2) as

u = a1 sin ω = ±
√

2αm2

m2 + 1
sin[

√
α

(m2 + 1)(c2 − 1)
(x − ct)].

For Jacobi elliptic functions for nonlinear partial differential equations (NPDEs), our interest is in the
exact periodic wave solutions. As we all know, there are three basic Jacobi elliptic functions: snξ = sn ξ

m ,
cnξ = cn ξ

m and dnξ = dn ξ
m , where m(0 < m < 1) is the modulus of the elliptic functions, satisfy the

relations:
sn2ξ + cn2ξ = 1, dn2ξ + m2sn2ξ = 1, (snξ)′ = cnξdnξ,

(cnξ)′ = −snξdnξ, (dnξ)′ = −m2snξcnξ.

So, we derive periodic wave solutions, namely, sn solutions

u = ±
√

− 2αm2

2m2 − 1
sn

[√
α

(2m2 − 1)(c2 − 1)
(x − ct)

]
,

and cn solutions

u = a1 sinω = ±
√

2αm2

m2 + 1
cn

[√
α

(m2 + 1)(c2 − 1)
(x − ct)

]
,

respectively.
Especially, when m → 1, the Jacobi elliptic functions degenerate to the functions

snξ → tanh ξ, cnξ → sech ξ, dnξ → sech ξ.

So, we derive kink solitary wave solutions

u = ±
√
−2α tanh

[√
α

c2 − 1
(x − ct)

]
,
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and bell solitary wave solutions

u = ±
√

α sech
[√

α

2(c2 − 1)
(x − ct)

]

respectively.
Case 3:

a0 = 0, a2
1 + b2

1 = 0, k =

√
2α

(2 − m2)(c2 − 1)
,

a1 = ±

√
αm2

β(2 − m2)
, b1 = ±

√
αm2

β(2 − m2)
i,

where i2 = −1.

So, we get the exact solutions of (1.2) as

u = ±
√

αm2

β(2 − m2)

{
sin

[√
2α

(2 − m2)(c2 − 1)
(x − ct)

]
+ i cos

[√
2α

(2 − m2)(c2 − 1)
(x − ct)

]}
.

Now integrating dω
dξ

= sin ω, and taking the integration constant zero, we obtain

sin ω =
2 exp(±ξ)

exp(±2ξ) + 1
= sech ξ. (8)

At the same time, we get
cosω = ± tanh ξ. (9)

3. Traveling Wave Solutions

According to (2.6), (2.7) and the solutions in Cases 1–3 above, we have the following solitary wave
solutions of equation (1.2).

I: If a0, a1, b1, k, c satisfy Case 1, then

u1(x, t) = ±
√
−2α tanh

[√
α

c2 − 1
(x − ct)

]
.

II: If a0, a1, b1, k satisfy Case 2, then

u2(x, t) = ±
√

α sech
[√

α

2(c2 − 1)
(x − ct)

]
.

III: If a0, a1, b1, k satisfy Case 3, then we get new exact traveling solutions as

u3(x, t) = ±
√

α
β
(tanh ξ + sech ξ)

= ±
√

α
β exp(±iω)

= ±
√

α
β

exp
{
±i arcsin

[
sech

√
2α

c2−1
(x − ct)

]}
,

and

u4(x, t) = ±
√

α

β
exp

{
±i arccos

[
tanh

√
2α

c2 − 1
(x − ct)

]}
,

where i2 = −1.

Note that as |ξ| → ∞, u3(x, t) = u4(x, t) = ±
√

α
β and u3(x, t), u4(x, t) are complex linear combinations

of kink solitary wave solutions u1(x, t) and bell solitary wave solutions u2(x, t). Also, equation (1.2) does
not have exact traveling wave solutions if a1, b1 ∈ R in Case 3.
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4. Conclusion and Discussion

The trig-function series method is used to construct wide classes of periodic traveling wave solutions
of the NPDEs arising in nonlinear physics, such as Klein-Gordon equation [26], and the Landou-Ginzburg-
Higgs equation [26–28]. The results revealed remarkable relations of solitary pattern, periodic solutions or
solitons. The availability of computer systems like Mathematica or Maple facilitates the tedious algebraic
calculations. The methods which we have proposed in this paper is also a standard, direct and effective
method, which allow us to do complicate and tedious calculation.

It is worth noting that the proposed method is simple and effective and gives more solutions. The applied
method will be used in further work to establish more entirely new solutions for other kinds of NPDEs.
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