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Abstract

In the present paper fractional Hamilton-Jacobi equation has been derived for dynamical systems

involving the Caputo derivative. Fractional Poisson-bracket is introduced. Further Hamilton’s canonical

equations are formulated and quantum wave equation corresponds to the fractional Hamilton-Jacobi

equation is suggested. Illustrative examples have been worked out to explain the formalism.
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1. Introduction

In seminal papers Riewe [1, 2] has formulated Lagrangian and Hamiltonian mechanics to include derivatives
of fractional order [3, 4, 5, 6, 7, 8, 9]. It has been shown that Lagrangian involving fractional time derivatives
leads to equations of motion with non conservative classical forces such as friction [1]. Motivated by this
approach many researchers have explored this area giving new insight into this problem [10, 11, 12, 13,
14, 15, 16]. Agrawal [12] has developed fractional calculus of variations dealing with problems in which
either the objective functional or the constraint equations, or both, contain at least one fractional derivative
term. Agrawal [12] has dealt with Lagrangian involving Riemann-Liouville (R-L) fractional derivatives. R-
L derivatives are nonlocal. R-L derivative of a constant is not zero, and in many applications it involves
fractional initial conditions which are nonphysical. For these reasons the Caputo derivative [8, 9] has widely
been used in recent literature. Agrawal [13, 14] in the recent papers has presented fractional Euler-Lagrange
equations involving Caputo derivatives. In conclusion it is emphasized that both (the R-L and Caputo)
fractional derivatives arise in the formulation, even when the fractional variational problem is defined only
in terms of one type of derivative. Thus fractional boundary conditions may be necessary even when the
problem is defined in terms of Caputo derivative. Further fractional Hamiltonian formulation has been
developed in terms of Caputo derivatives by Baleanu and coworkers [15, 16]. As a pursuit of this in the
present paper we investigate the fractional Hamiltonian involving Caputo derivative and derive the Hamilton-
Jacobi equations. Poisson brackets constitute important part of Hamiltonian mechanics. Entire Hamiltonian
mechanics can be restated in terms of Poisson-bracket. In view of this a generalization of Poisson-bracket
(fractional version) is suggested. Hamilton’s canonical equations (fractional case) have been expressed in
terms of fractional Poisson bracket. Further fractional quantum wave equation is suggested. Illustrative
examples are presented to explain the formalism.
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2. Fractional Calculus

Fractional calculus deals with generalizations of integer-order derivatives and integrals to arbitrary order.
In this section we present basic definitions and properties which will be used in the subsequent sections [3,
4, 5, 6, 7].

Definition 2.1 If f(x) ∈ C[a, b] and α > 0 then[4, 5, 6]

aIα
x f(x) :=

1
Γ(α)

∫ x

a

f(t)
(x − t)1−α

dt, x > a, (1)

xIα
b f(x) :=

1
Γ(α)

∫ b

x

f(t)
(x − t)1−α

dt, x < b, (2)

are called the left sided and the right sided Riemann-Liouville fractional integral of order α, respectively.

Definition 2.2 Let n − 1 ≤ α < n, then

aDα
x f(x) :=

1
Γ(n − α)

(
d

dx

)n ∫ x

a

f(t)
(x − t)−n+α+1

dt, (3)

xDα
b f(x) :=

1
Γ(n − α)

(
− d

dx

)n ∫ b

x

f(t)
(t − x)−n+α+1

dt, (4)

are called the left sided and the right sided Riemann-Liouville fractional derivative of order α, respectively,
whenever the RHS exists.

Definition 2.3 Let f(x) ∈ Cn[a, b] and n − 1 ≤ α < n, then [4, 6]

C
a Dα

x f(x) =a In−α
x Dnf(x) =

1
Γ(n − α)

∫ x

a

(x − t)n−α−1

(
d

dt

)n

f(t)dt, a < x < b (5)

C
x Dα

b f(x) =x In−α
b (−D)nf(x) =

1
Γ(n − α)

∫ b

x

(t − x)n−α−1

(
− d

dt

)n

f(t)dt, a < x < b (6)

are called as the left sided and the right sided Caputo fractional derivatives of order α, respectively, whenever
the RHS exists.

The above have the following
Properties [14]:
(i)

C
a Dα

t (f(t) + g(t)) = C
a Dα

t f(t) + C
a Dα

t g(t). (7)

(ii)
C
a Dα

t c = 0, c is constant. (8)

(iii) ∫ b

a

[Ca Dα
t f(t)]g(t)dt =

∫ b

a

f(t)[ C
t Dα

b g(t)]dt. (9)

(iv)

aDα
t (t − a)β =

Γ(β + 1)
Γ(β + 1 − α)

(t − a)β−α (β > α). (10)

(v)

aIα
t (t − a)β =

Γ(β + 1)
Γ(β + 1 + α)

(t − a)β+α. (11)
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aIα
t aDα

t x(t) = x(t) −
n∑

j=1

(aDα−j
t x)(a)

Γ(α + 1 − j)
(t − a)α−j. (12)

tI
α
b tD

α
b x(t) = x(t) −

n∑
j=1

(tD
α−j
b x)(b)

Γ(α + 1 − j)
(b − t)α−j. (13)

aIα
t

C
a Dα

t x(t) = x(t) −
n−1∑
j=0

(Djx)(a)
Γ(j + 1)

(t − a)j . (14)

tI
α
b

C
t Dα

b x(t) = x(t) −
n−1∑
j=0

((−D)jx)(b)
Γ(j + 1)

(b − t)j . (15)

3. Fractional Mechanics

Agrawal and coworkers [13, 16] have presented Euler-Lagrange equations for fractional variational problems
defined in terms of R-L and Caputo derivatives. In the following section we state a theorem regarding
Lagrangian involving left and right Caputo derivatives, which will be used in further discussion.

Theorem 3.1 Let J [q] be a functional of the form

J [q] =
∫ b

a

L(t, q,Ca Dα
t q,Ct Dβ

b q)dt, (16)

where 0 < α, β < 1 and is defined on the set of functions f(x) which have continuous left Caputo fractional
derivative (LCFD) of order α and right Caputo fractional derivative (RCFD) of order β in [a, b]. A necessary
condition for J [q] to have an extremum for a given function q(t) is that q(t) satisfies the generalized Euler-
Lagrange equation:

∂L

∂q
+ tD

α
b

∂L

∂ C
a Dα

t q
+ aDβ

t

∂L

∂ C
t Dβ

b q
= 0, t ε [a, b], (17)

and the transversality conditions:[
tD

α−1
b

∂L

∂ C
a Dα

t q
− aDβ−1

t

∂L

∂ C
t Dβ

b q

]
η(t)|ba = 0, (18)

where tD
α−1
b denotes the fractional integral of order 1 − α. See [13] for a proof.

4. Fractional Canonical Transformations and Generating

Functions

In this section we present the Hamiltonian formulation involving Caputo fractional derivatives. Consider
the fractional Lagrangian given in equation (16). Then the canonical momenta pα and pβ are

pα =
∂L

∂ C
a Dα

t q
, pβ =

∂L

∂ C
t Dβ

b q
, (19)

where pα and pβ are independent. The fractional canonical Hamiltonian is

H = pα
C
a Dα

t q + pβ
C
t Dβ

b q − L. (20)
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Taking total differential of (20) and using (19), we obtain

dH = dpα
C
a Dα

t q + dpβ
C
t Dβ

b q − ∂L

∂q
dq − ∂L

∂t
dt. (21)

Taking into account the fractional Euler-Lagrange equations (17), we get

dH = dpα
C
a Dα

t q + dpβ
C
t Dβ

b q + ( tD
α
b pα + aDβ

t pβ)dq − ∂L

∂t
dt. (22)

Equation (22) shows that H is a function of pα, pβ, q and t. Comparing total differential of H equation
(22) we have [16].

∂H

∂t
= −∂L

∂t
,

∂H

∂pα
= C

a Dα
t q,

∂H

∂pβ
= C

t Dβ
b q,

∂H

∂q
= aDβ

t pβ + tD
α
b pα. (23)

Transformation of q, pα, pβ into new variables Q(q, pα, pβ, t), Pα(q, pα, pβ, t), Pβ(q, pα, pβ, t) is canonical if
there exists a new Hamiltonian H(Q, Pα, Pβ, t) which satisfies modified Hamilton principle:

δ

∫ b

a

(Pα
C
a Dα

t Q + Pβ
C
t Dβ

b Q − H)dt = 0. (24)

As q, pα, and pβ are canonically conjugate, we have

δ

∫ b

a

(pα
C
a Dα

t q + pβ
C
t Dβ

b q −H)dt = 0. (25)

For these equations to hold, the integrands must differ by a total time derivative of an arbitrary function G,
hence

(Pα
C
a Dα

t Q + Pβ
C
t Dβ

b Q − H)dt − (pα
C
a Dα

t q + pβ
C
t Dβ

b q −H)dt = dG. (26)

Since G is not varied at the end points, we get

δ

∫ b

a

dG

dt
dt = δ[G(b) − G(a)] = 0. (27)

The function G, which completely determines the transformation is called as a generating function. For
mechanics involving fractional derivatives, we introduce variables q̄α, q̄β, Q̄α, Q̄β satisfying

dq̄α

dt
= C

a Dα
t q,

dq̄β

dt
= C

t Dβ
b q,

dQ̄α

dt
= C

a Dα
t Q,

dQ̄β

dt
= C

t Dβ
b Q. (28)

For integer-order derivatives, these new coordinates are the same as the usual canonical coordinates. How-
ever, while dealing with fractional derivatives, the coordinates q̄α, q̄β, Q̄α, Q̄β will not be canonical, so all
canonical expressions must be written in terms of the original coordinatesC

a Dα
t q,Ct Dβ

b q, C
a Dα

t Q,Ct Dβ
b Q.

5. Canonical Transformation of The First Kind

For a generating function G(q̄α, q̄β, Q̄α, Q̄β, t), the transformation is

(pα
C
a Dα

t q + pβ
C
t Dβ

b q − H)dt − (Pα
C
a Dα

t Q + Pβ
C
t Dβ

b Q −H)dt = dG(q̄α, q̄β, Q̄α, Q̄β, t). (29)

We have
dG =

∂G

∂q̄α
dq̄α +

∂G

∂q̄β
dq̄β +

∂G

∂Q̄α
dQ̄α +

∂G

∂Q̄β
dQ̄β +

∂G

∂t
dt. (30)

Equations (27–29) yield

∂G

∂q̄α
= pα,

∂G

∂q̄β
= pβ,

∂G

∂Q̄α
= −Pα,

∂G

∂Q̄β
= −Pβ,

∂G

∂t
= H− H. (31)
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6. Canonical Transformation of The Second Kind

Let S be a generating function dependent on q̄α, q̄β, Pα, Pβ, t. From equations (28), (29) we have

dG = pαdq̄α − PαdQ̄α + pβdq̄β − PβdQ̄β + (H− H)dt (32)

= pαdq̄α − d(PαQ̄α) + Q̄αdPα + pβdq̄β − d(PβQ̄β) + Q̄βdPβ + (H− H)dt. (33)

It is easy to observe that

d(G + PαQ̄α + PβQ̄β) = pαdq̄α + Q̄αdPα + pβdq̄β + Q̄βdPβ + (H− H)dt. (34)

Let S = G + PαQ̄α + PβQ̄β then

dS = pα dq̄α + Q̄αdPα + pβdq̄β + Q̄βdPβ + (H− H)dt. (35)

Since S is a function of q̄α, q̄β, Pα, Pβ, t, we can write

∂S
∂q̄α

= pα,
∂S
∂q̄β

= pβ,
∂S
∂Pα

= Q̄α,
∂S
∂Pβ

= Q̄β,
∂S
∂t

= H− H. (36)

7. Fractional Poisson Bracket

Hamiltonian mechanics can be written in terms of Poisson brackets. In the present section a generalization of
Poisson bracket has been introduced, which is useful for generalizing fractional mechanics involving Caputo
derivatives.

Definition 7.1 If functions F (t, q, pα, pβ) and G(t, q, pα, pβ) depend on the position coordinate, fractional
momenta and time, fractional Poisson (FP) bracket of F and G, denoted as [F, G]FP , is defined to be:

[F, G]FP =
∂F

∂q
(
∂G

∂pα
+

∂G

∂pβ
) − ∂G

∂q
(
∂F

∂pα
+

∂F

∂pβ
). (37)

The following properties can be observed:
(a)

[F, G]FP = −[G, F ]FP ,

(b)
[F1 + F2, G]FP = [F1, G]FP + [F2, G]FP ,

(c)
[F1, [F2, F3]FP ]FP + [F2, [F3, F1]FP ]FP + [F3, [F1, F2]FP ]FP = 0 (Jacobi′sidentity),

(d)

[F, q]FP = −(
∂F

∂pα
+

∂F

∂pβ
),

(f)

[F, pα]FP = [F, pβ]FP =
∂F

∂q
,

(g)
[q, q]FP = [pα, pα]FP = [pα, pβ]FP = 0,

[pα, q]FP = [pβ, q]FP = −1.
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8. Hamilton’s Canonical Equation In terms of Poisson Bracket

Hamilton’s canonical equations in terms of Poisson brackets can be expressed as

[q, H ]FP = (
∂H

∂pα
+

∂H

∂pβ
), (38)

[pα, H ]FP = [pβ, H ]FP = −(aDβ
t pβ +t Dα

b pα) = −∂H

∂q
. (39)

9. Fractional Quantum Wave Equation

As in conventional mechanics, the Hamilton-Jacobi (H-J) equation results from a canonical transformation
for which the new variables are constant. For integer-order derivatives, such a transformation will follow
automatically if the new Hamiltonian H is identically zero, since from the equations of motion we then have

Q̇ =
∂H
∂P

= 0, Ṗ = −∂H
∂Q

. (40)

For fractional derivatives, we can derive a similar relationship by putting

∂S
∂t

+ H(q, pα, pβ, t) = 0. (41)

In view of (36), (41) yields fractional version of H-J equation, i.e.

∂S
∂t

+ H(q,
∂S
∂q̄α

,
∂S
∂q̄β

, t) = 0. (42)

Hence the quantum wave equation corresponding to Hamilton-Jacobi involving fractional Caputo derivative
is suggested to be [1]

[H(q,−ih̄
∂

∂q̄α
,−ih̄

∂

∂q̄β
, t)]ψ = ih̄

∂ψ

∂t
, (43)

where ψ is a wave function.

10. Examples

Example 1. The total energy of the fractional oscillator is given as [17]

H =
1
2
kx2 +

1
2
mα( C

a Dα
t x)2, 0 < α < 1, a < t < b. (44)

The generalized energy of fractional oscillator in uniform electric field E will be

HFO = qEx +
1
2
kx2 +

1
2
mα( C

a Dα
t x)2, 0 < α < 1, a < t < b, (45)

where q is the charge of oscillator, mα = γ m and dimension of γ is Tα−1. In view of equation (20),
Lagrangian for FO is

LFO =
1
2
mα( C

a Dα
t x)2 − 1

2
kx2 − qEx. (46)

The generalized Euler-Lagrange equation equation (17) and the transversality condition equation (18) yield:

(a) − qE − kx + mα tD
α
b

C
a Dα

t x = 0, (b) tD
α−1
b

C
a Dα

t x|t=b = e1, (47)
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respectively. Equation (47) can be solved to get explicit expression for x(t), as follows:
Let ω2

α = k
mα

and qE
mα

= γ. The Euler-Lagrange equation then takes the form

tD
α
b

C
a Dα

t x = ω2
αx + γ. (48)

To find the solution of equation (48) with initial condition x(0) = e0, we apply tI
α
b to both sides of equa-

tion (48). Further, using (13) and (47)(b), we get

C
a Dα

t x(t) = ω2
α tI

α
b x(t) +

γ

Γ(α + 1)
(b − t)α +

e1

Γ(α)
(b − t)α−1. (49)

Similarly, applying aIα
t to both sides of equation (49) and using equation (14), we obtain

x(t) = ω2
α aIα

t tI
α
b x + aIα

t [
e1

Γ(α)
(b − t)α−1 +

γ

Γ(α + 1)
(b − t)α] + e0. (50)

as (x(0) = e0). Equation (50) can be thought of as Volterra-type integral that has composite integral
operators and can be solved to obtain

x(t) = (1 − ω2
α aIα

t tI
α
b )−1( aIα

t [
e1

Γ(α)
(b − t)α−1 +

γ

Γ(α + 1)
(b − t)α] + e0) (51)

=
∞∑

j=0

(ω2
α aIα

t tI
α
b )j( aIα

t [
e1

Γ(α)
(b − t)α−1 +

γ

Γ(α + 1)
(b − t)α] + e0). (52)

The generalized momentum for FO is

pα =
∂LFO

∂ C
a Dα

t q
= mα

C
a Dα

t x, (53)

and generalized Hamiltonian in terms of pα is

HFO =
1

2mα
p2

α +
1
2
kx2 + qEx. (54)

Hence the Hamilton’s equations (equation (23)) become

∂HFO

∂pα
=

pα

mα
= C

a Dα
t q,

∂HFO

∂q
= kx + qE = tD

α
b pα, (55)

which are equivalent to generalized Euler-Lagrange equations given in equation (47)(a).

Further, we present Hamilton-Jacobi equation for this system. equation (42) yields the Hamilton-Jacobi
Equation.

∂SFO

∂t
+

1
2mα

(
∂SFO

∂x̄α
)2 +

1
2
kx2 + qEx = 0, (56)

where dx̄α

dt = C
a Dα

t x(t). Assume that a solution to equation (56) is the form of SFO = S1(t)+S2(x̄α). Then

1
2mα

(
dS2

dx̄α
)2 +

1
2
kx2 + qEx = −dS1

dt
= β, (57)

where β is a constant. Therefore

dS2

dx̄α
=

√
2mα(β − 1

2
kx2 − qEx), S1 = −βt, (58)

so that

SFO = x̄α

√
2mα(β − 1

2
kx2 − qEx) − βt. (59)
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Further, we identify β with the new momentum coordinate Pα. Hence the new position variable Qα will be

Qα =
∂SFO

∂β
=

∂

∂β
[x̄α

√
2mα(β − 1

2
kx2 − qEx) − βt] (60)

=
mα√

2mα(H − 1
2
kx2 − qEx)

x̄α − t = γ, (61)

where γ is a constant. Solving equation (61) for x̄α we, get

mαx̄α = (γ + t)

√
2mα(β − 1

2
kx2 − qEx) (62)

Further differentiating (62) with respect to t, we get

mα
dx̄α

dt
=

√
2mα(β − 1

2
kx2 − qEx) = pα. (63)

In view of equation (42), we can identify β with the Hamiltonian H . Then in view of (54), mdx̄α

dt =√
2m(β − 1

2kx2 − qEx) = pα. But

mα
C
a Dα

t x = pα. (64)

Applying tD
α
b to both sides of equation (64), we get

mα tD
α
b

C
a Dα

t x = tD
α
b pα. (65)

Using equation (55) we obtain
mα tD

α
b

C
a Dα

t x = kx + qE, (66)

which is the same equation that we derive from Euler-Lagrange and Hamilton equations.
This result can also be obtained using fractional Poisson brackets.

[x, HFO]FP = [x,
1
2
kx2 + qEx +

1
2
mα(C

a Dα
t x)2]FP .

Since the generalized momentum for FO is

pα =
∂LFO

∂ C
a Dα

t q
= mα

C
a Dα

t x, (67)

we can write,

[x, HFO]FP = [x,
1
2
kx2 + qEx +

p2
α

2mα
]FP =

pα

mα
= C

a Dα
t x, (68)

and

[pα, HFO]FP = [pα,
1
2
kx2 + qEx +

p2
α

2mα
]FP = −kx − qE = − tD

α
b pα. (69)

These equations are the same as the Hamilton’s equations equation (55). Therefore, both the methods yield
the following equation, for fractional oscillator in uniform electric field

−kx − qE + mα tD
α
b

C
a Dα

t x = 0. (70)

Equation (43) yields the following wave equation corresponding to fractional oscillator in the uniform electric
field E

(
1

2mα
(−ih̄

∂

∂x̄α
)2 +

1
2
kx2 + qEx)ψ = ih̄

∂ψ

∂t
. (71)
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The wave function for the quantized FO is of the form

ψ(x, x̄α, t) = A(x, x̄α, t) e
i
h̄SF O(x,x̄α,t), (72)

where A(x, x̄α, t) and SFO(x, x̄α, t) are amplitude and phase, respectively. Substituting equation (72) in equa-
tion (71) we get

− h̄2

2mα
(

∂A

∂x̄α
)2 +

1
2mα

A(
∂SFO

∂x̄α
)2 + (

1
2
kx2 + qEx)A = ih̄

∂A

∂t
− A

∂SFO

∂t
. (73)

Separating this expression into real and imaginary parts, we get the two equations:

1
2mα

(
∂SFO

∂x̄α
)2 +

∂SFO

∂t
+

1
2
kx2 + qEx =

h̄2

2mα
(

∂A

∂x̄α
)2 and

∂A

∂t
= 0. (74)

Equation (74) reduces to fractional Hamilton-Jacobi, when h̄ = 0.

Example 2. Consider FO with dissipative force

F (x) = −γ C
t Dβ

b x, (75)

where dimension of γ is MLT−(1+β). Using potential corresponding to this force, we have the Lagrangian
as [1]:

L =
1
2
mα( C

a Dα
t x)2 − 1

2
kx2 − i

γ

2(−1)
β
2

( C
t D

β
2
b x)2. (76)

In view of equation (17), we obtain generalized Euler-Lagrange equation as

−kx + mα tD
α
b

C
a Dα

t x − i
γ

(−1)
β
2

aD
β
2
t

C
t D

β
2
b x = 0. (77)

The generalized momenta are

pα = mα
C
a Dα

t x and p β
2

= −i
γ

(−1)
β
2

C
t D

β
2
b x. (78)

The corresponding Hamiltonian is

H =
1
2
mα(C

a Dα
t x)2 +

1
2
kx2 + i

γ

2(−1)
β
2

(C
t D

β
2
b x)2. (79)

Using equations (78), the Hamiltonian for this system takes the form

H =
p2

α

2mα
+

1
2
kx2 +

p2
β
2

2iγ(−1)
β
2

. (80)

Using Hamilton’s canonical Poisson bracket, we have

[pα, H ] = [pα,
p2

α

2mα
+

1
2
kx2 +

p2
β
2

2iγ(−1)
−β
2

] = −kx = [p β
2
, H ] = −(aD

β
2
t p β

2
+t Dα

b pα). (81)

Substituting equations (78) in equation (81) we arrive at equation (77).

11. Results and Conclusion

Fractional mechanics describes both conservative and non-conservative systems. With this motivation a
generalization of Poisson bracket is introduced. Further generalized Hamilton’s canonical equations have
been derived in the case of Lagrangian involving Caputo derivatives. Subsequently Hamilton-Jacobi equation
has been derived and fractional quantum wave is suggested.
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