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Abstract

Five dimensional String cosmological models in the presence of variable bulk viscous coefficient,

constant bulk viscous coefficient and in the absence of bulk viscosity are constructed and some physical

and kinematical behaviors of these models are discussed.
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1. Introduction

In recent years cosmologists have been interested in constructing string cosmological models of the uni-
verse. The concept of string theory is developed to describe events at the early stages of the universe.
Kibble [1], Zeldovich [2] and Vilenkin [3] believed that strings may be one source of density perturbations,
and that are required for the formation of large scale structures in the universe. Therefore it is a subject
of considerable interest of cosmologists to study cosmic strings in the framework of general relativity. The
general relativistic formalism of cosmic strings are given by Letelier [4] and Stachel [5]. They considered the
energy momentum tensor for string distribution in the form

Tij = ρuiuj − λωiωj , (1)

where
uiu

i = −ωiω
i = −1 (2)

and
uiωi = 0, (3)

where ρ is the energy density for a cloud of strings with particles attached to them, λ the string tension
density, the unit time like vector ui is the flow vector and the unit space like vector ωi specifies the direction
of the strings. The particle density associated with the configuration is given by

ρp = ρ − λ. (4)

Now days, it is conjectured that material distribution behaves like a viscous fluid during an early phase
of the evolution of the universe when galaxies were formed [6]. Misner [7] studied the effect of viscosity
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in the evolution of the universe. Mohanty and Pradhan [8] constructed Robertson-Walker cosmological
model with bulk viscosity with equation of state p = (γ − 1) ρ where0 ≤ γ ≤ 2. Murphy [9] constructed
isotropic homogeneous spatially flat cosmological models with bulk viscous fluid alone because the shear
viscosity can not exist due to the assumption of isotropy. Bali and Jain [10, 11] investigated some expanding
and shearing viscous fluid cosmological models in which coefficient of shear viscosity is proportional to the
rate of expansion on the model. Further, they showed that in free gravitational field the model yields
“degenerate and non degenerate Petrov Type-1 universe.” Roy and Prakash [12, 13] investigated viscous
fluid cosmological models of Petrov type–I D and non degenerate Petrov Type I in which coefficients of shear
and bulk viscosities are constants. Bali and Dave [14] constructed cosmological models in the presence and
absence of bulk viscous fluid in which coefficient of bulk viscosity is constant.

Recently, considerable interest have been evinced in theories of more than four dimensions, in which
the extra dimensions are compacted to small size in the course of evolution of the universe [15]. The
cosmological study in higher dimensional space time are necessitated, even made urgent, by the growing
belief that the nature of space time in the universe are higher than four. Chatterjee [16] studied massive
strings in higher dimensional homogeneous space time. Krori et al. [17] discussed Bianchi type-1 higher
dimensional cosmologies and concluded that, physically, strings will be like geometric string, and matter
and strings coexist throughout the evolution of the universe. They mentioned that cosmic strings with some
specific orientation do not occur in Bianchi type-V cosmology. Rahaman et al. [18] discussed some string
cosmological models in a higher dimensional spherically symmetric space time based on Lyra’s geometry.
Venkateswarlu [19] constructed higher dimensional string cosmological models in scale covariant theory of
gravitation. Recently Mohanty et al. [20] and Mohanty and Mahanta [21] constructed various higher
dimensional string cosmological models and studied their geometrical and physical behaviors.

In this paper we have constructed and studied higher dimensional bulk viscous string cosmological models
in general relativity. The behaviors of the models in presence of variable bulk viscous coefficient, constant
bulk viscous coefficient and in the absence of bulk viscous coefficient are discussed.

2. Metric and Field Equations

We consider the five dimensional line element of the form

ds2 = −dt2 + R2
(
dx2 + dy2 + dz2

)
+ A2dψ2, (5)

where R and A are functions of “t,” only. The fifth co-ordinate is taken to be space-like and the coordinates
are co-moving, where

u0 = 1, u1 = u2 = u3 = u4 = 0. (6)

Without loss of generality, we choose
ωi =

(
0, 0, 0, 0, A−1

)
. (7)

Further, we consider energy momentum tensor for cloud of string dust with bulk viscous coefficient as [22, 23]

T j
i = ρui uj − λωi ωj − ξ ul

;l

(
gj

i + ui uj
)

, (8)

where ξ is the coefficient of bulk viscosity, ρ is the proper energy density for a cloud of strings with particles
attached to them, λ is the string tension density, θ = ul

;l is the expansion scalar, ωi represent the direction
of the string satisfying

ui ui = −ωi ωi = −1, (9)

and
uiωi = 0. (10)
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Einstein’s field equations are given by

Rij −
1
2
R gij = −8 π Tij . (11)

Field equations (11) for the metric (5) yield

3
(

R′

R

)2

+ 3
R′A′

RA
= 8πρ (12)

2
R′′

R
+

(
R′

R

)2

+ 2
R′A′

RA
+

A′′

A
= 8πξ

(
3
R′

R
+

A′

A

)
(13)

3
R′′

R
+ 3

(
R′

R

)2

= 8π

[
λ +

(
3
R′

R
+

A′

A

)]
(14)

3. Solutions of the Field Equations

In this Section we intend to solve the field equations explicitly for cosmic strings with variable bulk
viscous coefficient, constant bulk viscous coefficient, and in the absence of bulk viscous coefficient.

3.1. Variable bulk viscous coefficient

In this case there are five unknowns, viz. λ, ρ, R, A and ξ involved in three field equations (12)–(14).
Hence to get a determinate solution, we take different physical conditions found in the literature [22, 23]:

ρ = λ (Geometric string) (15a)

ρ = (1 + ω)λ (p-string) (15b)

ρ + λ = 0 (Mohanty et al., 2007) (15c)

Case I: Geometric string (ρ = λ)
In this case, due to paucity of one equation, an additional constraint relating these parameters is required

to obtain explicit exact solutions of the system of field equations. Therefore we consider the power law [24–29]

A = Rn, (16)

where n is a constant. Using equations (15a) and (16) in field equations (12)–(14), we get

R′′

R′ −
(

n2 + 4n + 1
1 − n

)
R′

R
= 0. (17)

Equation (17) yields

R =
[
n (n + 5)

n − 1
(kt + k1)

] n−1
n(n+5)

, (18)

A =
[
n (n + 5)

n − 1
(kt + k1)

] n−1
(n+5)

, (19)

where k and k1 are non-zero constants of integration.
Using equations (18) and (19) in equation (13), we get

ξ = − k

8π

(n + 1) (n + 2)
n (n + 3) (n + 5)

1
(kt + k1)

. (20)
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In this case, the geometry of the string cosmological model with variable bulk viscous coefficient is described
by the metric

ds2 = −dt2 +
[
n (n + 5)

n − 1
(kt + k1)

] 2(n−1)
n(n+5) [

dx2 + dy2 + dz2
]
+

[
n (n + 5)

n − 1
(kt + k1)

] 2(n−1)
(n+5)

dψ2 . (21)

The rest energy density ρ, the scalar of expansion θ, the shear σ, the spatial volume V and the deceleration
parameter q for model (21) are obtained as

ρ(= λ) =
1
8π

3k2(n + 1)[
n(n+5)

n−1 (kt + k1)
]2

(22)

θ =
k(n + 3)

n(n+5)
n−1 (kt + k1)

(23)

σ2 = 1
2

[
4
9

+ 3
{

k
n(n+5)

n−1 (kt+k1)
+ 1

3

}2

+
{

nk
n(n+5)

n−1 (kt+k1)
+ 1

3

}2
]

(24)

V =
[
n(n + 5)

n − 1
(kt + k1)

] (n−1)(n+3)
n(n+5)

(25)

q =
2(n + 2)

(n − 1)(n + 3)
. (26)

The energy density, string tension density, expansion scalar, shear become infinite for t = −k1
k , which

indicates that the evolution of the universe starts with singularity at this value of t. Moreover, we observe
that the three spatial coordinates expand indefinitely but the extra dimension contracts as t → ∞ in the
interval -5< n <-1. The scalar of expansion is finite at t=0 and θ → 0 when t → ∞. Since lim

t→∞
σ2

θ2 �= 0,

the model does not approach isotropy for large values of t. The spatial volume is finite when t → 0 and it
becomes infinite when t → ∞. The deceleration parameter q becomes negative when n ∈ (−∞,−2)∪(−2, 1).
Therefore the model is inflationary.

Case II: Takabayasi string (p-string)
In this case, using equations (15b) and (16) in field equations (12)–(14) we get

R =
[
ω(n + 3) + n

ω + 1
(at + a1)

] (ω+1)
ω(n+3)+n

, (27)

A =
[
ω(n + 3) + n

ω + 1
(at + a1)

] n(ω+1)
ω(n+3)+n

, (28)

ξ =
1
8π

a[(2n − 1) − ω(n + 1)]
(n + 3)(ω(n + 3) + n)(at + a1)

. (29)

Hence the geometry of the model is described by the metric

ds2 = −dt2 +
[
ω(n + 3) + n

ω + 1
(at + a1)

] 2(ω+1)
ω(n+3)+n [

dx2 + dy2 + dz2
]

+
[
ω(n + 3) + n

ω + 1
(at + a1)

] 2n(ω+1)
ω(n+3)+n

dψ2. (30)
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The physical and kinematical quantities have the following expressions:

ρ = (1 + ω)λ =
1
8π

3a2(n + 1)(ω + 1)2

[(ω(n + 3) + n)(at + a1)]
2 (31)

ρp =
1
8π

3a2(n + 1)(ω + 1)ω
[(ω(n + 3) + n)(at + a1)]

2 (32)

θ =
a(n + 3)(ω + 1)

(ω(n + 3) + n)(at + a1)
(33)

σ2 = 1
2

[
4
9 + 3

{
ω+1

ω(n+3)+n)(at+a1)
+ 1

3

}2

+
{

an(ω+1)
ω(n+3)+n)(at+a1)

+ 1
3

}2
]

(34)

V =
[
ω(n + 3) + n

ω + 1
(at + a1)

] (ω+1)(n+3)
ω(n+3)+n

(35)

q = − 3
ω + 1

. (36)

The reality condition ρ > 0 is satisfied when n + 1 > 0. At early era (t → 0), we have λ > 0, ρ > 0, ρp > 0.
Also, we get

ρp

|λ| = ω, (37)

which indicates that strings and particles coexist. From equation (37) we observe that the particles dominate
over the strings for ω > 1, and string dominate over the particles for ω < 1. Moreover, the strings and
particles contribute gravitational field equally for ω = 1. As time increases, the scale factor A gradually
decreases for -3/2 < n < 0, while other scale factor R increases. The extra dimension becomes insignificant
as time proceeds after the creation of the universe and we are left with real four dimensional world. The
spatial volume is finite when t → 0 and it becomes infinite when t → ∞. The deceleration parameter is
negative. So the model is inflationary.

Case III: Special string (ρ + λ = 0)
In this case, using equations (15c) and (16) in field equations (12)-(14), we get

R =
[
(n + 2)(n − 3)

n − 1
(b1t + b2)

] (n−1)
(n+2)(n−3)

, (38)

A =
[
(n + 2)(n − 3)

n − 1
(b1t + b2)

] n(n−1)
(n+2)(n−3)

, (39)

ξ =
1
8π

9b1(n + 1)]
(n2 − 9)(n + 2)(b1t + b2)

, (40)

where b1(�= 0) and b2 are constants of integration. The geometry of the model is described by the metric

ds2 = −dt2 +
[
(n + 2)(n − 3)

n − 1
(b1t + b2)

] 2(n−1)
(n+2)(n−3) [

dx2 + dy2 + dz2
]

+
[
(n + 2)(n − 3)

(n − 1)
(b1t + b2)

] 2n(n−1)
(n+2)(n−3)

dψ2. (41)

In this case physical and kinematical quantities have the expressions

ρ(= −λ) =
1
8π

3b2
1(n + 1)[

(n+2)(n−3)
n−1 (b1t + b2)

] (42)
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ρp =
1
8π

6b2
1(n + 1)(n − 1)

(n + 2)(n − 3)(b1t + b2)
(43)

θ =
b1(n + 3)(n − 1)

(n + 2)(n − 3)(b1t + b2)
(44)

σ2 = 1
2

[
4
9 + 3

{
b1(n−1)

(n+2)(n+3)(b1t+b2)
+ 1

3

}2

+
{

nb1(n−1)
(n+2)(n−3)(b1t+b2)

+ 1
3

}2
]

(45)

V =
[
(n + 2)(n − 3)

n − 1
(b1t + b2)

] (n−1)(n+3)
(n+2)(n−3)

(46)

q = −3(n + 1)b1

n − 1
. (47)

The energy conditions ρ > 0 and ρp > 0 are satisfied for n ∈ (−1, 1) ∪ (3,∞). We have
ρp

|λ| = 2, (48)

which indicates that particles dominate over strings.
The expansion scalar θ is always positive for n ∈ (-2,1) ∪ (3,∞) and b1 > 0. Therefore the model is

expanding. The three spatial co-ordinates expand indefinitely as t → ∞, but the extra dimension contracts
as t → ∞ when n ∈ (-2,0). The spatial volume is finite as t → 0; and it becomes infinite as t → ∞, when
n ∈ (−∞,−3)∪ (−2, 1)∪ (3,∞). The deceleration parameter is negative for n ∈ (−∞,−1)∪ (1,∞). So the
model is inflationary. The model is not inflationary when n ∈ (−1, 1).

3.2. Constant bulk viscous coefficient

In this case, field equations (12)–(14) constitute a system of three equations with four unknown param-
eters, viz. λ, ρ, R and A. Using equation (16), we obtain solution for equations (12)–(14) as

R =
[(

n2 + 2n + 3
n + 2

) (
c(n + 2)

8πξ(n + 3)

)
e8πξ (n+3)

n+2 t + c1

] n+2
n2+2n+3

(49)

A =
[(

n2 + 2n + 3
n + 2

)(
c(n + 2)

8πξ(n + 3)

)
e8πξ (n+3)

n+2 t + c1

] n(n+2)
n2+2n+3

. (50)

The geometry of the string model in this case is described by the metric

ds2 = −dt2 +
[
n2 + 2n + 3

n + 2

(
c(n + 2)

8πξ(n + 3)
e8πξ n+3

n+2 t + c1

)] 2(n+2)
n2+2n+3 [

dx2 + dy2 + dz2
]

+
[
n2 + 2n + 3

n + 2

(
c(n + 2)

8πξ(n + 3)
e8π ξ n+3

n+2 t + c1

)] 2n(n+2)
n2+2n+3

dψ2 (51)

The physical and kinematical parameters for this model are obtained as

8πρ =
3(n + 1)c

2
e16π ξ(n+3

n+2 )t[(
n2+2n+3

n+2

)(
c(n+2)

8πξ(n+3)e
8π ξ(n+3

n+2 )t + c1

)]2
(52)

8πλ =
c
(
8πξ

(
n+3
n+2

)
− 24πξ c − 8πξ n c

)
e8π ξ( n+3

n+2 )t[(
n2+2n+3

n+2

) (
c(n+2)

8πξ(n+3)e
8π ξ( n+3

n+2 )t + c1

)]

−
c2

(
n2+2n+3

n+2

)
e16π ξ( n+3

n+2 )t

[(
n2+2n+3

n+2

) (
c(n+2)

8πξ(n+3)e
8π ξ(n+3

n+2 )t + c1

)]2 (53)
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ρp =
1
8π

[
3(n + 1) + n2+2n+3

n+2

]
c
2
e16π ξ(n+3

n+2 )t

[(
n2+2n+3

n+2

) (
c(n+2)

8πξ(n+3)e
8π ξ(n+3

n+2 )t + c1

)]2
(54)

θ =
(n + 3)ce8π ξ(n+3

n+2 )t(
n2+2n+3

n+2

)(
(n+2)

8πξ(n+3)e
8π ξ(n+3

n+2 )t + c1

) (55)

σ2 =
1
2

⎡
⎢⎣4

9
+ 3

⎧⎨
⎩ (n + 2) ce8π ξ(n+3

n+2 )t

(n2 + 2n + 3)
(

c(n+2)
8πξ(n+3)

e8π ξ(n+3
n+2 )t + c1

) +
1
3

⎫⎬
⎭

2

+

⎧⎨
⎩ (n + 2)nce8π ξ( n+3

n+2 )t

(n2 + 2n + 3)
(

c(n+2)
8πξ(n+3)e

8π ξ(n+3
n+2 )t + c1

) +
1
3

⎫⎬
⎭

2
⎤
⎥⎦ (56)

V =
[
(n2 + 2n + 3)

n + 2

(
c(n + 2)

8πξ(n + 3)
e8π ξ(n+3

n+2 )t + c1

)] (n+2)(n+3)
n2+2n+3

(57)

and

q = −
[

c18πξ

(n + 2)ce8π ξ(n+3
n+2 )t

+ 1

]
. (58)

The reality condition ρ > 0 is satisfied when n + 1 > 0. The expansion scalar θ is always positive for
n ∈ (−∞,−3) ∪ (−2,∞). The scalar of expansion θ is finite at t = 0 and θ = 8πξ(n+3)2

n2+2n+3 when t → ∞.
Therefore the model is expanding. The ratio σ2/θ2 tends to a finite limit as t → ∞. So the model is highly
anisotropic for large t. The spatial volume V tends to infinite as t → ∞ for n ∈ (−∞,−3) ∪ (−2,∞). The
proper energy density ρ, the string tension densityλand the particle density ρpare finite for any value of t,
i.e. they are in damped motion. The deceleration parameter q is negative for n ∈ (−2,∞). Therefore the
model is inflationary.

3.3. String with out bulk viscous fluid

The field equations (12)–(14) in the absence of bulk viscous fluid (ξ = 0) reduce to

3
(

R′

R

)2

+ 3
R′A′

RA
= 8πρ, (59)

2
R′′

R
+

(
R′

R

)2

+ 2
R′A′

RA
+

A′′

A
= 0, (60)

3
R′′

R
+ 3

(
R′

R

)2

= 8πλ. (61)

In order to overcome the paucity of field equations for determining four unknowns from three equations, we
consider (16). Equations (59)–(61) yield the solution

R =
[(

n2 + 2n + 3
n + 2

)
(dt + d1)

] n+2
n2+2n+3

, (62)

A =
[(

n2 + 2n + 3
n + 2

)
(dt + d1)

] n(n+2)
n2+2n+3

, (63)
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where d(�=0) and d2 are constants of integration. The geometry of the string cosmological model in this case
is described by the metric

ds2 = −dt2 +
[(

n2 + 2n + 3
n + 2

)
(dt + d1)

] 2(n+2)
n2+2n+3 [

dx2 + dy2 + dz2
]

+
[(

n2 + 2n + 3
n + 2

)
(dt + d1)

] 2n(n+2)
n2+2n+3

dψ2 (64)

The physical and kinematical parameters for this model have the following expressions:

8πρ =
3d2(n + 1)[(

n2+2n+3
n+2

)
(dt + d1)

]2
(65)

8πλ =
3d2(n + 1)(1 − n)(n + 2)
[(n2 + 2n + 3) (dt + d1)]

2 (66)

ρp =
3d2(n + 1)(2n + 1)(n + 2)

8π [(n2 + 2n + 3) (dt + d1)]
2

(67)

θ =
d(n + 3)(n + 2)

(n2 + 2n + 3) (dt + d1)
(68)

σ2 =

1
2

⎡
⎢⎣ 4

{(
n2+2n+3

n+2

)
(dt + d1)

}2

+ 3
{
3d +

(
n2+2n+3

n+2

)
(dt + d1)

}2

+
{

3nd +
(

n2+2n+3
n+2

)
(dt + d1)

}2

⎤
⎥⎦

d
{(

n2+2n+3
n+2

)
(dt + d1)

}2 (69)

V =
[(

n2 + 2n + 3
n + 2

)
(dt + d1)

] (n+3)(n+2)
n2+2n+3

, (70)

and

q = − −3(n + 1)
(n + 2)(n + 3)

. (71)

It follows from these expressions that ρ > 0, λ > 0 and ρp > 0 for n ∈ (−1
2
, 1). Moreover ρ, λ, ρp, σ2 and

θ become infinite and volume V = 0 for t = −d1
d . Subsequently for n = 1,−1 we get λ = 0 and ρ = ρp. In

these cases the model represents a dust filled universe. At the early era (t → 0), we have

ρp

|λ| =
2n + 1
1 − n

. (72)

From equation (72), we have
ρp

|λ| > 1 for 0 < n < 1 (73)

ρp

|λ| < 1 for −∞ < n < 0 and 1 < n < ∞ (74)

ρp

|λ| = 1 for n = 0 (75)

Therefore strings and particles coexist throughout the evolution. Moreover, equation (73) indicates that
particles dominate over strings for 0 < n < 1. From (74) it is clear that the strings dominate over the particles
for n ∈ (−∞, 0)∪ (1,∞). Also from (75), we observe that the strings and particles equally contribute to the
gravitational field for n = 0. The scalar expansion θ is always positive for n ∈ (−∞,−3) ∪ (−2,∞) and d,
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d1 > 0. Therefore the model describes an expanding model in the interval (−∞,−3) ∪ (−2,∞). The scalar
expansion θ is finite at t = 0 and θ → 0 as t → ∞. The spatial volume tends to infinite as t → ∞ when
n ∈ (−∞,−3)∪(−2,∞). We observe that the three space coordinates expand and extra coordinate contracts
as t increases for n ∈ (−2, 0). The deceleration parameter is negative when n ∈ (−∞,−3)∪(−1,∞), vanishes
for n = -1 and is positive for n ∈ (−∞,−3)∪ (−2,−1).

4. Conclusion

In the preceding sections we constructed five dimensional string cosmological models in the presence
of variable bulk viscous coefficient, constant bulk viscous coefficient and in the absence of bulk viscous
coefficient. In the case of variable bulk viscous coefficient, it is observed that at initial epoch the bulk
viscous coefficient is constant and tends to zero as t tends to infinity. In case of constant bulk viscous
coefficient the scalar expansion θ is finite at t = 0 and θ = 8πξ(n+3)(n+2)

n2+2n+3
when t → ∞. In the absence

of bulk viscosity θ → 0 when t → ∞. Thus there is finite expansion due to bulk viscosity. The string
tension density and particle density are finite throughout the evolution and are in damped motion in case
of constant viscous coefficient whereas in case of variable viscous coefficient the string tension density and
particle density gradually decrease to zero as t → ∞.
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