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Abstract

The Hamilton-Jacobi formalism is used to discuss the path integral quantization of a spinning super-

particle model. The equations of motion are obtained as total differential equations in many variables.

The equations of motion are integrable, and the path integral is obtained as an integration over the

canonical phase space coordinates.
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1. Introduction

Dirac initiated the path to locating all the constraints in the Hamiltonian formulation of singular theories
[1]. The constraints are naturally classified according to the corresponding stages of this procedure. It is
convenient to reorganize the constraints such that they are explicitly decomposed into first-class and second-
class constraints. Information about the constraint structure is important for identification in the physical
sector, for the study of classical and quantum symmetries, for quantization purposes, and so on. The
main feature of Dirac’s method is to consider primary constraints initially; then all constraints are obtained
by using the consistency conditions. Hence one can obtain equations of motion of a singular Lagrangian
system obtained via the consistency conditions [2, 3]. A variant method is the Hamilton-Jacobi formalism for
constrained systems [4, 5], based on Carathéodory’s equivalent the Lagrangian method [6]. In this formalism,
those coordinates whose correspondent accelerations can not be solved as a function of the momenta are
arbitrary variables of the theory.

We have obtained a set of Hamilton-Jacobi partial differential equations in terms of these variables,
and from this set we obtained the equations of motion of the system as total differential equations for the
characteristics. These total differential equations so obtained must satisfy integrability conditions, and for
these conditions to be satisfied the nature of the constraints (first class or second class) will play an essential
role. This formalism does not give distinction between the first and second class constraints, and does not
need any gauge-fixing terms.

Recently, several interesting constrained systems were investigated by applying Hamilton-Jacobi treat-
ment to treat the classical regulations, e.g. electromagnetic field, the Young-Mills field, the Einstein gravi-
tational field, and massless Seigel superparticle with simple supersymmetry [7, 14].

The aim of this paper is to present a refined analysis of the path integral quantization of spinning
superparticle, which involve extra fermionic variables to represent space-time degrees of freedom [15], by

261



ELEGLA, FARAHAT

applying the Hamilton-Jacobi Formulation.
Now let us make a brief review on the Hamilton-Jacobi formulation of singular system (the canonical

method). The Lagrangian function of any physical system with n degrees of freedom is a function of n

generalized coordinates, n generalized velocities and parameter t, i.e. L ≡ L(qi, q̇i, t). The Hess matrix is
defined as

Aij =
∂2L(qi, q̇i, t)

∂q̇i∂q̇j
, i, j = 1, 2, . . . , n. (1)

If the rank of this matrix is n, then the Lagrangian is called regular, otherwise it is called singular. Systems
which have singular Lagrangian are called singular systems or constrained systems.

One starts from the singular Lagrangian L(qi, q̇i, t) with Hess matrix of rank (n − p), p < n. The
generalized momenta pi corresponding to the generalized coordinates qi are defined as

pa =
∂L

∂q̇a
, a = 1, 2, . . . , n− p, (2)

pμ =
∂L

∂q̇μ
, μ = n − p + 1, . . . , n. (3)

Since the rank of the Hess matrix is (n − p), one may solve (2) for q̇a as

q̇a = q̇a(qi, q̇μ, pb; t) ≡ ωa. (4)

Substituting (4), into (3), we get

pμ =
∂L

∂q̇μ

∣∣∣∣
q̇a=ωa

≡ −Hμ(qi, q̇μ, pa; t). (5)

The canonical Hamiltonian Ho is defined as

H0 = −L
(
qi, q̇ν, q̇a; t

)
+ paωa + pμq̇μ

∣∣
pν=−Hν

, μ , ν = n − p + 1, . . . , n. (6)

The set of Hamilton-Jacobi partial differential equations (HJPDE) is expressed as

H ′
α

(
τ, qν, qa, Pi =

∂S

∂qi
, P0 =

∂S

∂τ

)
= 0, α = 0, n− p + 1, . . . , n, (7)

where
H ′

0 = p0 + H0 , (8)

H ′
μ = pμ + Hμ. (9)

We define P0 =
∂S

∂τ
, and Pi =

∂S

∂qi
, with q0 = t, and S being the action.

The equations of motion are obtained as total differential equations and take the forms

dqa =
∂H ′

α

∂Pa
dtα, (10)

dPr =
∂H ′

α

∂qr
dtα, r = 0, 1, . . . , n. (11)

dZ =
(
−Hα + Pa

∂H ′
α

∂Pa

)
dtα, (12)

where Z = S(tα, qa). These equations are integrable if and only if [16, 17]

dH ′
0 = 0, (13)
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dH ′
μ = 0, μ = n − p + 1, . . . , n. (14)

If conditions (13) and (14) are not satisfied identically, one may consider them as new constraints and again
test the integrability conditions. Thus repeating this procedure, one may obtain a set of constraints such
that all the variations vanish, then we may solve equations (10) and (11) to get the canonical phase-space
coordinates as

qa ≡ qa(t, tμ), pa ≡ pa(t, tμ), μ = 1, . . . , p. (15)

Then the path integral representation may be written as

〈Out | S | In〉 =
∫ n−r∏

a=1

dqadpa exp

[
i

∫ t′α

tα

(
−Hα + pa

∂H ′
α

∂pa

)
dtα

]
, (16)

where a = 1, . . . , n − p, and α = 0, n − p + 1, . . . , n. We should notice that integral (16) is an integration
over the canonical phase space coordinates (qa, pa).

2. Hamilton-Jacobi Formulation of Spinning Superparticle

The spinning superparticle model which possesses both (local) world-line and (rigid) target-space super-
symmetry, is described by the action [13]:

S =
∫ {

1
2e

(
ẋμ − iθ̄γμθ̇ − eh̄γμh

)2

+
i

2

(
ψμ − h̄γμθ

) d

dτ

(
ψμ − h̄γμθ

)

+
i

e
χ
(
ψμ − h̄γμθ

) (
ẋμ − iθ̄γμθ̇ − eh̄γμh

) }
dτ.

(17)

In such a space-time one can define, in addition to the usual coordinate, a spinor of real fermionic supermul-
tiplets (θ, h), which define an anti-commuting and a commuting Majorana spinor in the target space-time,
respectively.

The singular Lagrangian is

L =
1
2e

(
ẋμ − iθ̄γμθ̇ − eh̄γμh

)2

+
i

2

(
ψμ − h̄γμθ

) d

dτ

(
ψμ − h̄γμθ

)
+

i

e
χ
(
ψμ − h̄γμθ

) (
ẋμ − iθ̄γμθ̇ − eh̄γμh

)
.

(18)

The canonical momenta defined in (2) and (3) take the forms

Pμ =
∂L

∂ẋμ
=

1
e

(
ẋμ − iθ̄γμθ̇ − eh̄γμh

)
+

i

e
χ
(
ψμ − h̄γμθ

)
, (19)

πθ =
∂L

∂θ̇
= −i

(
Pμγμθ̄ +

1
2
ψμγμh̄

)
= −Hθ, (20)

πθ̄ =
∂L

∂ ˙̄θ
= 0 = −Hθ̄, (21)

πh =
∂L

∂ḣ
= 0 = −Hh, (22)

πh̄ =
∂L

∂ ˙̄h
= − i

2
ψμγμθ = −Hh̄, (23)

P μ
ψ =

∂L

∂ψ̇μ

=
i

2
(
ψμ − h̄γμθ

)
= −Hψ, (24)

Pχ =
∂L

∂χ̇
= 0 = −Hχ, (25)

Pe =
∂L

∂ė
= 0 = −He. (26)
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We can solve (19) for ẋμ in terms of Pμ and other coordinates to get

ẋμ = ePμ − iχ
(
ψμ − h̄γμθ

)
+ iθ̄γμθ̇ + eh̄γμh. (27)

A straightforward calculation shows that the canonical Hamiltonian H0 is obtained as

H0 = −L + Pμẋμ + πθ θ̇ + πθ̄
˙̄θ + πhḣ + πh̄

˙̄h + Pψψ̇ + Pχχ̇ + Peė

=
1
2e

{
ePμ − iχ

(
ψμ − h̄γμθ

)}2

+ ePμ

(
h̄γμh

)
.

(28)

The set of HJPDE’s is thus

H ′
0 = P0 +

1
2e

{
ePμ − iχ

(
ψμ − h̄γμθ

)}2

+ ePμ

(
h̄γμh

)
, (29)

H ′
θ = πθ + i

(
Pμγμθ̄ +

1
2
ψμγμh̄

)
, (30)

H ′
θ̄ = πθ̄, (31)

H ′
h = πh, (32)

H ′
h̄ = πh̄ +

i

2
ψμγμθ, (33)

H ′
ψ = P μ

ψ − i

2

(
ψμ − h̄γμθ

)
, (34)

H ′
χ = Pχ, (35)

and
H ′

e = Pe. (36)

The equations of motion (10) and (11) may now be concisely written in the forms

dxμ =
{
ePμ − iχ

(
ψμ − h̄γμθ

)
+ e

(
h̄γμh

)}
dτ + iθ̄γμdθ, (37)

dP0 = 0, (38)

dPμ = 0, (39)

dπθ =
{
− i

e

(
ePμ − iχψμ

)
h̄γμχ

}
dτ − i

2
ψμγμdh̄− i

2
h̄γμdψμ, (40)

dπθ̄ =
(
− iPμγμ

)
dθ, (41)

dπh =
(
− ePμh̄γμ

)
dτ, (42)

dπh̄ = −
{ i

e

(
ePμ − iχψμ

)
χh̄γμ + ePμγμh

}
dτ − i

2
ψμγμdθ

− i

2
γμθdψμ,

(43)

dP μ
ψ =

{ i

e

(
ePμ − iχ

(
ψμ − h̄γμθ

) )
χ
}
dτ − i

2
h̄γμdθ − i

2
γμθdh̄

− i

2
γμdψμ,

(44)

dPχ =
{ i

e

(
ePμ − iχ

(
ψμ − h̄γμθ

) )(
ψμ − h̄γμθ

)}
dτ, (45)

and
dPe =

{1
2
P 2 +

1
e2

χ2
(
ψμ − h̄γμθ

)2

+ Pμ

(
h̄γμh

)}
dτ. (46)
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Integrability conditions (13) and (14) imply that the variation of the constraints (29–36) should be
identically zero. One notices that

dH ′
0 = 0 (47)

and
dH ′

θ̄ = 0 (48)

are identically zero; whereas the variation of

dH ′
θ =

{
− i

e

(
ePμ − iχψμ

)
h̄γμχ

}
dτ + iPμγμdθ ≡ H ′′

θ dτ, (49)

dH ′
h =

(
− iPμh̄γμ

)
dτ ≡ H ′′

hdτ, (50)

dH ′
h̄ = −

{ i

e

(
ePμ − iχψμ

)
χh̄γμ + ePμγμh

}
dτ ≡ H ′′

h̄dτ, (51)

dH ′
ψ =

{ i

e

(
ePμ − iχ

(
ψμ − h̄γμθ

))
χ
}

dτ ≡ H ′′
ψdτ, (52)

dH ′
χ =

{ i

e

(
ePμ − iχ

(
ψμ − h̄γμθ

))(
ψμ − h̄γμθ

)}
dτ ≡ H ′′

χdτ, (53)

and

dH ′
e =

{1
2
P 2 +

1
e2

χ2
(
ψμ − h̄γμθ

)2

+ Pμ

(
h̄γμh

)}
dτ ≡ H ′′

e dτ, (54)

are not. Therefore we obtain the following set of additional constraints:

H ′′
θ =

{
− i

e

(
ePμ − iχψμ

)
h̄γμχ

}
, (55)

H ′′
h =

(
− iPμh̄γμ

)
, (56)

H ′′
h̄ = −

{ i

e

(
ePμ − iχψμ

)
χh̄γμ + ePμγμh

}
, (57)

H ′′
ψ =

{ i

e

(
ePμ − iχ

(
ψμ − h̄γμθ

))
χ
}

, (58)

H ′′
χ =

{ i

e

(
ePμ − iχ

(
ψμ − h̄γμθ

))(
ψμ − h̄γμθ

)}
, (59)

and
H ′′

e =
{1

2
P 2 +

1
e2

χ2
(
ψμ − h̄γμθ

)2

+ Pμ

(
h̄γμh

)}
. (60)

Now the total differential of H ′′
θ , H ′′

h , H ′′
h̄
, H ′′

ψ, H ′′
χ and H ′′

e vanish identically, i.e.

dH ′′
θ = 0, (61)

dH ′′
h = 0, (62)

dH ′′
h̄ = 0, (63)

dH ′′
ψ = 0, (64)

dH ′′
χ = 0, (65)

and
dH ′′

e = 0. (66)

Thus the equations of motion (37)–(46) and the new constraints (55)–(60) represent an integrable system.
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Since the equations of motion are integrable, the action can be written as

dZ = −H0dτ − Hθdθ − Hθ̄dθ̄ − Hhdh− Hh̄dh̄

− Hψdψμ − Hχdχ − Hede + Pμdxμ

=
{

1
2

eP 2 +
1
2e

χ2
(
ψμ − h̄γμθ

)2

− i

2
ψμ

(
h̄γμθ̇ − ˙̄hγμθ

)

+
i

2

(
ψμ − h̄γμθ

)
ψ̇μ

}
dτ.

(67)

We now present a phase-space action for the spinning superparticle,

S =
∫ {

1
2

eP 2 +
1
2e

χ2
(
ψμ − h̄γμθ

)2

− i

2
ψμ

(
h̄γμθ̇ − ˙̄hγμθ

)

+
i

2

(
ψμ − h̄γμθ

)
ψ̇μ

}
dτ.

(68)

Making use of (68), the path integral defined in (16) becomes

〈
xμ, τ ; x′

μ, τ ′〉 =
∫

dxμ dpμ exp

[
i

∫ {
1
2
eP 2 +

1
2e

χ2
(
ψμ − h̄γμθ

)2

− i

2
ψμ

(
h̄γμθ̇ − ˙̄hγμθ

)
+

i

2

(
ψμ − h̄γμθ

)
ψ̇μ

}
dτ

]
.

(69)

3. Conclusions

In this paper the spinning superparticle has been quantized by constructing a path integral quantization
within the Hamilton-Jacobi approach to constrained systems. The equations of motion are obtained as total
differential equations in many variables. All the constraints coming from the Hamiltonian procedure and
the integrability conditions have been derived. The path integral quantization is performed using the action
given by Hamilton-Jacobi formulation, and the integration is taken over the canonical phase space.
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