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Abstract

We have constructed stiff fluid cosmological models in five dimensional space-time based on Lyra

geometry. Some physical and geometrical properties of the models are discussed.
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1. Introduction

As the evolving early universe was much smaller than today, the present four-dimensional space-time of
the universe could have been preceded by a higher dimensional space-time. Thus space-time of the early
universe is commonly modeled as having more than four dimensions. Due to spontaneous compactification,
the extra dimensions contract to the unobserved Planckian length scale, or remain constant [1–3]. The five
dimensional space–time is particularly attractive because both 10D and 11D super gravity theories admit
solutions which spontaneously reduced to 5D [4].

Einstein’s idea of geometrizing gravitation in general theory of relativity motivated others to geometrize
other physical fields. Weyl [5] proposed a modification of Riemannian manifold in order to unify gravitation
and electromagnetism. But due to the non-integrability of length transfer this theory was never considered
seriously. Later, Lyra [6] proposed a modification of Riemannian geometry in which he introduced a gauge
function to remove the non-integrability of length of a vector under parallel transport. In this theory both
the scalar and tensor fields have intrinsic geometrical significance. Halford [7] pointed out that the energy
conservation law does not hold in the cosmological theory based on Lyra geometry. Various five dimensional
cosmological models in Lyra manifold are constructed by Rahaman et al. [8–10] and Singh et al. [11],
Mohanty et al. [12–14].

In this paper we have considered a five dimensional spherically symmetric space-time with stiff fluid
distribution in Lyra geometry. Exact solutions of the field equations are obtained for two cases, viz. constant
displacement vector and time dependent displacement vector. Some physical and geometrical properties of
the models are also discussed.

2. Field Equations

Here we consider the five dimensional spherically symmetric space-time in the form

ds2 = dt2 − eλ
(
dr2 + r2 d θ

2 + r2 sin2 θ dφ2
)
− eμ dy2, (1)
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where λ and μ are functions of cosmic time t only.
The field equations in normal gauge for Lyra’s manifold as proposed by Sen [15] and Sen and Dunn [16]

are given by

Rij −
1
2

gij R +
3
2

φi φj −
3
4

gij φk φk = −χ Tij, (2)

where φk is the displacement vector and other symbols have their usual meanings as in the Riemannian
geometry. The displacement vector φk is defined as

φk = (β, 0, 0, 0, 0) . (3)

The energy momentum tensor is taken as

Tij = (p + ρ)ui uj −p gij , (4)

together with the commoving co-ordinates
gij ui uj = 1. (5)

Here, p, ρ and ui are isotropic pressure, energy density and five velocity vector of the cosmic fluid distribution
respectively.

The field equations (2) together with (3), (4) and (5) for the space-time metric (1) yield the following
equations:

3
4

(
•2

λ +
•
λ

•
μ

)
− 3

4
β2 = χ ρ (6)

••
λ +

3
4

•2

λ +
1
2

••
μ +

1
4

•2

μ +
1
2

•
λ

•
μ +

3
4

β2 = −χ p (7)

and
3
2

(
••
λ +

•2

λ

)
+

3
4

β2 = −χ p, (8)

where overhead dot denotes differentiation with respect to t.

3. Cosmological Solutions

Mohanty et al. [12] showed that the general perfect fluid does not survive in Lyra manifold in this
space-time. Therefore in this section we intend to derive the exact solutions of the field equations (6)–(8)
for stiff fluid distribution, i.e.

p = ρ. (9)

Here, there are four unknowns λ, μ, β and p involved in three field equations (6)–(8).
In order to derive explicit solutions we consider the following cases.
Case I: β = Constant
In this case there are the unknowns λ, μ and p involved in field equations (6)–(8).
Solving equations (6) and (8), we obtain

••
λ
•
λ

+
3
2

•
λ = −

•
μ

2
= k1, (10)

where k1 is an arbitrary constant.
Now equation (10) yields

μ = −(2 k1 t + k2) (11)

and
λ = ln(a ek1 t +b)

2/3, a > 0, (12)
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where k2 and b are constants of integration.
Substituting equations (11) and (12) in equation (7) we get

p =
a k1 ek1t

3χ (a ek1t +b)2
[
2b (k1 +1) + a ek1t(k1 + 2)

]
+ C, (13)

where C = k2
2−2k2+3β2

4
. In this case, the metric (1) takes the form

ds2 = dt2 −
(
a ek1t +b

)2/3 (
dr2 + r2dθ2 + r2 sin2 θdφ2

)
− e−(2k1t+k2) dy2. (14)

Case II: β = β(t)
In this case, there are four unknowns λ, μ, p and β involved in the three field equations (6)–(8). One

more equation relating these parameters is required to obtain explicit exact solutions of the field equations.
Therefore we consider an analogue of power law, i.e.

μ = aλ, (15)

where ais an arbitrary constant.
Substituting this equation in field equations (6) and (7), we obtain

3
4

•2

λ(a + 1) − 3
4
β2 = χρ (16)

and

(
a

2
+ 1)

••
λ +

(a2 + 2a + 3)
4

•2

λ +
3
4
β2 = −χρ. (17)

Further, substituting the value of β2 from equation (8) in equations (16) and (17), we get

••
λ +

(a + 3)
2

•2

λ = 0 (18)

and
(a − 1)

2

[
••
λ +

(a + 3)
2

•2

λ

]
= 0. . (19)

For a �= 1, equations (18) and (19) are identical, which on integration yields

λ = ln (a2t + b2)
2

a+3 , a �= −3. (20)

From equation (15), we obtain
μ = ln (a2t + b2)

2a
a+3 . (21)

Substituting the value of λin equation (16), we get

χρ =
3a2

2(a + 1)
(a + 3)2(a2t + b2)2

− 3
4

β2 . (22)

It is impossible to obtain separate values of ρ and β. Therefore in view of the physical behavior of the gauge
function β, we consider

β =
1

a3t + b3
. (23)

With the help of equation (23) equation (22) yields

χρ =
3a2

2(a + 1)
(a + 3)2(a2t + b2)2

− 3
4(a3t + b3)2

. (24)
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In this case, the line element (1) can be written as

ds2 = dt2 − (a2t + b2)
2

a+3
(
dr2 + r2dθ2 + r2 sin2 θdφ2

)
− (a2t + b2)

2a
a+3 dy2 . (25)

Case II(A): A modification
For a = −3, equation (18) yields

λ = a4t + b4. (26)

From equation (15) we get
μ = −3(a4t + b4). (27)

Substituting the value of λ in equation (16), we obtain

χρ = −3
2
a2
4 −

3
4
β2. (28)

Due to paucity of independent equations it is impossible to solve for explicit values of ρ and β from one
equation. Therefore in view of the physical nature of β(t) we assume

β = e−t. (29)

With the help of equation (29), equation (28) becomes

χρ = −3
2
a2
4 −

3
4
e−2t. (30)

In this case the metric (1) takes the form

ds2 = dt2 −ea4t+b4
(
dr2 + r2dθ2 + r2 sin2 θdφ2

)
− e−3(a4t+b4)dy2. (31)

4. Discussion

In the preceding section we derived the exact solutions of the field equations for two cases viz. β =
Constant and β = β(t). In case I, equation (14) shows that at initial epoch t = 0 the metric becomes flat.
As time increases the three space coordinates expands while the fifth coordinate, i.e. the extra dimension
contracts. At infinite time the extra dimension becomes unobservable. The scalar of expansion θ and shear
scalar σ2 in this case are obtained as

θ =
−bk1

aek1t + b
, a > 0, k1 > 0, b < 0 (32)

and

σ2 =
a2k2

1e
2k1t

6(aek1t + b)2
− ak1e

k1t

3(aek1t + b)
+

k2
1

2
+

k1

3
+

2
9
. (33)

Here the expansion scalar is finite at t = 0 and decreases as t increases. The expansion in the model stops
at t = ∞. As lim

t→∞
σ2

θ2 �= 0, the model does not approach isotropy for large values of t.

In case II, equation (25) indicates that the line element is flat at the initial epoch t = 0. For −3 < a < 0
the three space coordinates expand with the passage of time while the extra one contracts. The scalar of
expansion θ and shear scalar σ2 in this case are

θ =
a2

a2t + b2
(34)

and

σ2 =
2
9

+
(a2 + 3)a2

2

2(a2t + b2)2(a + 3)2
− a2

3(a2t + b2)
. (35)
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This model does not approach isotropy for large values of t.
In sub case II(A), from equation (31) it is clear that the line element is flat at the initial epoch t = 0.

With increase of time t the extra coordinate contracts while the other three space coordinates expand. At
infinite time the extra dimension becomes very small and is unobservable. In this case the expansion scalar
vanishes while the shear scalar becomes constant. This behavior is similar to that of cosmic string model
obtained by Reddy [17] in four dimensional Lyra manifold.
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