
Turk J Phys

32 (2008) , 305 – 313.

c© TÜBİTAK
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Abstract

The Lagrangian of a system describing the dynamical behaviour of a time-dependent harmonic oscil-

lator is modified and then used to evaluate the Feynman path integral of the oscillator. The path integral

of the time-dependent oscillator is shown to reduce to the time-independent within certain limits.
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1. Introduction

Approximation methods such as perturbation theory have been used to evaluate exact solutions of time-
dependent Schrödinger equation [1–9]. Khandekar and Lawande [10] had evaluated the exact quantum theory
of a classical force oscillator with a time dependent frequency and a velocity-dependent damping term using
path integral approach. Feynman path integral in quantum mechanics, however, involves a kinetic and
potential energies term in the Lagrangian. The kinetic term which is quadratic in momentum acts like a
Gaussian measure on the remaining integral [1]. In this paper we will follow the same approach [11–12] and
modified the Lagrangian as

L = esin γt

(
q̇2

2
− ω2 (t) q2

2

)
+ J (q) q, (1)

where frequency ω (t) is assumed to be a function of time, J(t) is the time dependent perturbed force,
and γ is a damping factor. In obtaining equation (1) from the time-independent Lagrangian, the following
assumptions can be made:

m (t) = esin γt (2a)

k2 (t) = ωesin γt (2b)

J (t) = J(t)qesin γt. (2c)

The equation of motion of the particle defined by equation (1) is given by

q̈ (t) + γ cos γtq̇ (t) + ω2 (t) q = J(t). (3)

The Hamiltonian defined by

H =
∂L

∂q
q̇ − L (p, q, t) (4)
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is obtained from (1) as

H (p, q, t) = e− sin γt P 2

2
+ esin γt

(
ω2 (t) q2

2
+ J (t) q

)
. (5)

Equation (5) reduces to time-independent Hamiltonian in the limits γ → 0 , t → 0, and equation (5) satisfies
in a compact form the time-dependent Schrödinger equation:

i�
∂ψ

∂t
(t) = Ĥ(t)ψ(t), (6)

where Ĥ(t)is the time dependent quantum Hamiltonian operator. In order to explain the dynamical be-
haviour of the system described by equation (5), it is therefore the primary objectives of this paper to
evaluate an exact expression for the kernel (propagator) K (q′′, t′′, q′, t′) based on the Weyl-ordering pre-
scription in the quantum Hamiltonian of the time-evolution operator which can be expressed as a sum over
all possible paths connecting the point q′ and q′′with weight factor exp

[
i
�
S (q′′, q′, T )

]
, where S (q′′, q′, t′′, t′)

is the action that is
K (q′′, t′′, q′, t′) =

∫
Dq(t)e

i/�S(q′′,t′′,q′,t′) , (7)

with Dq(t) being the Feynman measure.
The propagator can be expressed semi-classically as exp

(
i
�
Scl

)
, with Scl being the classical action, times

a prefactor; remarkably this leads to

K (q′′, t′′, q′, t′) =
( m

2πi�

)ND/2
√

det
(

∂2Scl [q′′, q′]
∂q′∂q′′

)
exp

(
i

�
Scl [q′, q′′]

)
, (8)

where D is the dimension and the determinant

M = det
(

∂2Scl [q′′, q′]
∂q′∂q′′

)
(9)

is the known Pauli Van Vleck Morette determinant.

2. Particle Trajectory

The forced harmonic oscillators are of importance in quantum dynamics and in other quantum fields
since these fields are represented as a set of forced harmonic oscillators. The solution of the time-dependent
Schrödinger equation of equation (6) is given by

ψ (q, t) =
∑

k

Ake−iEktφ(q,t) , (10)

with Ak being the time-dependent expansion coefficient defined as

Ak = e+iEkt 〈φk | ψ〉 . (11)

On substituting equation (11) into equation (1), Ituen [9] shows that

ψ (q′′, t′′) =
∫

K (q′′, t′′, q′, t′)ψ (q, t′) dq′, t′′ > t′ (12)

which follows that the kernel (propagator) is obtained from equation (12) as

K (q′′, t′′, q′, t′) =
∫

e−i(Ekt′′+Ekt′)ψ(q′′,t′′). (13)
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The path traversed by the particle defined by the equation of motion in the absence of external field in
equation (4) is

q (t) = Ae
+γ cos γ+

√
cos2 γt−4ω2

+e
+γ cos γt+

√
cos 2γt−4ω2

= e
+γ cos γt

2

(
Ae

√
cos2 γt−4ω2t

2 + Be
−t

√
cos2 γt−4ω2

2

)
. (14)

Equation (14) shows that the trajectory of the particle is a mixture of oscillatory and decaying terms; the
oscillatory term arises from the time-independent Hamiltonian, and the decaying terms arises from the time-
dependent Hamiltonian. For a small value of the damping factor (Figure 1 and Figure 2), we appropriate
the quantities in the square root and obtain

√
cos2 γt − 4ω2 ∼=

√
(γt)2 − 4ω2 = 2iω

√
1 −

(
γt

2ω

)2

. (15)

On substituting equation (15) into equation (14), the trajectory takes the form

q (t) = e
+γ cos γt

2

(
Ae

iω
√

1−(γt/2ω)2t + Be
−iω
√

1−(γt/2ω)2t
)

, (16)

which, as mention earlier, equation (18) reduces to the time-independent solution. When we take the limits
γ → 0, t → 0 or simply γt → π/4, this shows that our choice of the Hamiltonian and Lagrangian given
above are in appropriate, since it reduces to the known solution.
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Figure 1. Variations of Ω with the damping factor. Note we obtain the time-independent solution as γt tends to

zero.
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Figure 2. Variation of Ω2 as a function of cos2 γt. Ω2 has units of ω2.

3. Evaluation of the Time-Dependent Feynman Propagator

The Feynman propagator defined for the particle discussed above is expressed as

K (q′′, t′′, q′, t′) = Lim
N→∞

N−1∐
j=1

AN

∫ ∞

−∞
dqj

⎛
⎝ i

�

N∑
j=1

m

2ε
Δ2qj − εV

(
qj
)
− εJkqk

⎞
⎠, (17)
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where AN is the normalization constant and the action in terms of equation (1) is approximated as

S =
∫ t′′

t′
Ldt = esin γt

(
1
2ε

(qk − qk−1)
2 − εω2q2

k − εJkqk

)
. (18)

Substituting equation (18) into equation (19), we obtain

K (q′′, t′′; q′, t′) = Lim
N → ∞
ε → ∞

(
esin γt

2πi�ε

)N
2 N−1∏

j−1

∞∫
−∞

dq(j)

× exp

(
i
�

N∑
j−1

1
2ε

(qk − qk−1)
2 − ε

2
ω2

kq2
k − εJkqk

)
,

(19)

where we have made the assumption that t′′ − t′ = ε, and conditions of equation (2) have been applied in
obtaining equation (19) from equation (17).

Equivalently, equation (19) can be written in the form

K (q′′, t′′; q′, t′) = F (T ) exp
(

i

�
Sc (q′′, t′′, q′, t′)

)
(20)

with F (T ) evaluated to give

F (T ) =
(

ωesin γt

2πi� sin (ωT )

)
N

2
, (21)

so that the propagator becomes

K (q′′, t′′; q′, t′) =
(

ωesin γt

2πi� sin (ωT )

)N/2
exp

[
i

�
Sc (q′′, q′)

]
. (22)

However, the Hamiltonian of the system describes a forced harmonic oscillator of mass esin γtfor which we
can calculate the classical action. In order to calculate the action explicitly, we recall the Euler-Lagrangian
equations of equation (3) and its classical trajectory is the solution of the equation:(

d2

dt2
+ γ cos γt

d

dt
+ ω2

)
qcl (t) =

f(t)
esin γt

. (23)

The solution of equation (23) consists of a homogeneous and an inhomogeneous part and can be written as

qc (t) = qH (t) + qI (t) (24)

where qH(t) had been evaluated in equation (18) as

qH (t) = e
γ cos γt

2

(
Ae

iω
�

1−( γt
2ω )2

t + Be
−iω

�
1−( γt

2ω )t

)
. (25)

with A and B as arbitrary constants. The inhomogeneous solution is solved by the method of Green’s
functions. Here, the Green’s function is defined by the equation(

d2

dt2
+ γ cos γt

d

dt
+ ω2

)
G (t − t′) = −δ (t − t′) , (26)

where the inhomogeneous solution can be written as

q1 (t) =

tf∫
tj

dt′G (t − t′)
f (t′′)
esin γt

(27)
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Defining the Green’s function in the Fourier space as

G (t − t′) =
(

2π−4

∫
d4ke−ik(t−t1)G (k)

)
; (28)

and substituting equation (28) into (26), we obtain

G (k) =
(

(2π)−4 1
K2 − ω2 − γ cos γtk

)
; (29)

and subsequently, the Green’s function takes the form

G (t − t′) =
(

(2π)−4 d4ke−ik(t−t1)

K2 − ω2 − γ cos γtk

)
. (30)

A quick inspection of equation (3) shows that the integral has poles at

K =
γ cos γt

2
±

√
1 −

(
γt

2ω

)2

. (31)

The fundamental Green’s function needed in this analysis is that of Feynman which corresponds to choosing
a contour as

II II

Thus, the Feynman Green’s function has the form

GF (t − t′) =
θ (t − t′) e

�
γ cos γt−ω

√
1−(γt/2ω)2

�
(t−t′)(

γ cos γt + 2iω

√
1 − (γt/2ω)2

) +
θ (t′ − t) e

�
γ cos γt−ω

√
1−(γt/2ω)2

�
(t−t′)(

γ cos γt + 2iω

√
1 − (γt/2ω)2

) . (32)

Substituting equation (32) into equation (27), we obtain the inhomogeneous solution as

q1(t) = 1

e
sin γt(γ cos γt+2iω

√
1−(γt/2ω)2)

×
[

tf∫
tI

dt′e

�
γ cos γt

2 −iω
√

1−(γt/2ω)2
�
(t−t′)xf(t) +

tf∫
tI

dt′e

�
γ cos γt

2 −iω
√

1−(γt/2ω)2
�
(t−t′)f(t′)

]
. (33)

We can now write the classical trajectory as

qc (t) = qH (t) + qI(t) = Ae
γ cos γt

2 +iω
√

1−(γt/2ω)2 + Be
γ cos γt

2 −iω
√

1−(γt/2ω)2

− 1

e
sin γt(γ cos γt+2iω

√
1−(γt/2ω)2)

×
[

tf∫
tI

dt′e

�
γ cos γt

2 −iω
√

1−(γt/2ω)2
�
(t−t′)f(t) +

tf∫
tI

dt′e

�
γ cos γt

2 −iω
√

1−(γt/2ω)2
�
(t−t′)f(t′)

]
.

(34)

Imposing the boundary conditions; (34) is solved for A and B in terms of the initial and the final co-ordinates
of trajectory, which is given by
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qcI (t) =
1

sin

�
γ cos γt

2
+ ω

�
1 − (γt/2ω)2

�T

�
qf sin(γ cos γt+ω

√
1−(γt/2ω)2

�
(t−t′)

+qI sin

�
γ cosγt

2
+ ω

�
1 − (γt/2ω)2

��
tf − t

�

+
1

2esin γt

(
γ cosγt

2 ω

√
1 − (γt2ω)2

)
tf∫

tI

dt′f (t′)
[
e
−
�

γ cos γt
2 iω

√
1−(γt/2ω)2

�
cos
(

γ cos γt

2
+ ω

√
1 − (γt/2ω)2

)
T

− cos
(

γ cos γt

2
+ ω

√
1 − (γt/2ω)2

)
(tf + tI − t − t′)

]

− 1

2iesin γt

�
γ cos γt

2
ω
�

1 − (γt2ω)2
�
�
����

tf�
tI

dt′f (t′)e
−
�

γ cos γt
2 iω

√
1−(γt/2ω)2

�
cos

�
γ cos γt

2
+ ω

�
1− (γt/2ω)2

�
(t − t′)

+
tf�
tI

dt′f (t′)e
−
�

γ cos γt
2 iω

√
1−(γt/2ω)2

�
cos

�
γ cos γt

2
+ ω

�
1 − (γt/2ω)2

�
(t − t′)

�
			
 .

(35)

We now evaluate the classical action from equation (1) and (18) to be

Sc (qI, qf) =
ωesin γt

2 sin

(
γ cosγt

2 + ω

√
1 −

(√
γt/2ω

)2
) [

q2
I + q2

f cos
(

γ cos γt

2
+ ω

√
1 − (γt/2ω)2

)
T − 2q1qf

]

+
qi

sin
(

γ cosγt
2 + ω

√
1 − (γt/2ω)2

)T

tf∫
tf

dtf (t) sin
(

γ cos γt

2
ω

√
1 − (γt/2ω)2

)
(tf − ti)

+
qf

sin
(

γ cosγt
2 + ω

√
1 − (γt/2ω)2

)T

tf∫
tf

dtf (t) sin
(

γ cos γt

2
ω

√
1 − (γt/2ω)2

)
(t − ti)

− 1

esin γt

(
γ cosγt

2 + ω

√
1 − (γt/2ω)2

)
sin

(
γ cosγt

2 + ω

√
1 − (γt/2ω)2

)T

⎡
⎢⎣

tf∫
tf

dtx (t)

x

t∫
ti

dt′f(t′) sin
(

γ cos γt

2
ω

√
1 − (γt/2ω)2

)
(tf − t)x sin

(
γ cos γt

2
ω

√
1 − (γt/2ω)2

)
(t′ − tif (t′))

⎤
⎦ . (36)

Combining equations (21) and (32) give a complete transition amplitude for the time harmonic oscillator
interacting with a time dependent external source.

4. Uncertainty Relation

We consider again a time-dependent oscillator with variable mass m(t) = esin γt and frequency in the
absence of an external field, our equation (5) reduces to Caldirola-kanai oscillator [13–15]

Hck =
e− sin γtP 2

2
+

ω2(t)esin γt

2
q2 (37)
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On the other hand, Lewis and Riesenfeld [16–17] introduces the invariant method to find the Fock space of
exact states of time-dependent oscillators which has been currently reviewed in Reference [13, 18–20]. The
quantum theory of the damped oscillator is prescribed by the time-dependent Schrödinger equation [13]

i�
∂

∂t
Ψ(q, t) = Hck(P, q, t)Ψ(q, t) (38)

However, the eigenfunction associated with Equation (38) are found by different methods [21–22].
Two linear invariant operators are introduced [21, 23, 24] as

â(t) = i[U∗(t)P̂q − U̇∗(t)q̂
â(t) = −i[U(t)P̂q − U̇(t)q̂

(39)

where the pair of oscillators are first order in position and momentum operators and U(t) is a complex
solution to the classical equation of motion of Equation (3) when J(t) is set to zero as

Ü(t) =
ṁ(t)
m(t)

U̇(t) + ω(t)U(t) = 0

or
Ü(t) + γ cos γtU̇(t)ω2(t)U(t) = 0 (40)

The set of operators in Equation (39) are required to satisfy the quantum Liouville-Von Neumann equations:

i� ∂
∂t â(t) + [â(t), Ĥck(p, q, t)] = 0

i� ∂
∂t

â+(t) + [â+(t), Ĥck(p, q, t)] = 0
(41)

Imposing the Wronskian condition

�esin γt[U̇∗(t)U(t) − U̇(t)U∗(t)] = i (42)

allows the operators in Equation (2\39) to satisfy the usual commutation relation at equal times

[â(t), â+(t)] = 1 (43)

and its play the roles of time-dependent annihilation and creation operators. Using Equation 40 we obtain
the solution for the undamped motion

(
γ ≤ ω

2

)
as

U(t) =
1√

2� − Ω
e−γ cosωte−iΩt (44)

where

Ω = 2ω

√
1 −

(
γt

2ω

)2

(45)

The number operators defined by
N̂(t) = â+(t)â(t) (46)

satisfies Equation 41 and each state
N̂(t)|n, t〉 = n|(n, t) (47)

is an exact equation state of equation (38) up to a time-dependent phase factor [24]. Thus, the eigenfunction
of the number state satisfying Equation 37 is given as [25]

Ψn(q, t) =
(

Ωesin γt

π�

) 1
4 e−i(n+ 1

2 )Ωt

√
2nn!

× exp
[
−esin γt

(
Ω
2�

+ i
γ

4�

)
q2

]
(48)
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where Hn is the Hermite Polynomial and Equation 36 reduces to [24] when sin 	 γt is appropriate to first
order. The eigenfunction in Equation 48 has the dispersion relations

〈x2〉 = �
2U∗(t)U(t) =

�
2

2�Ω
e

−γ cos γt
2 e−iΩte

−γ cos γt
2 e−iΩt =

�
2

2Ω
e−γ cosγt (49)

〈P 2
q = �

2(m′(t))2U̇(t)U̇(t) (50)

where m′(t) is the reduced variable mass of m(t) and is defined as

m′(t) = exp
[

d

dt
sin γt

]
= eγ cosγt (51)

Using equation (43) and its time derivative and equation (51) in Equation 50, we obtain

〈P 2
q 〉 =

�

2Ω

((
γ2

2

)2

+ Ω2

)
eγ cosγy (52)

Thus, we obtain the uncertainty relation as

(Δq)(ΔPq) =
�

2

[
1 +

(
γ2

2Ω

)2
] 1

2

(53)

These results indicate that the uncertainty relation is satisfied during the time evolution of the wave function.

5. Conclusion

We introduced the Lagrangian of equation (1) and analyzed its dynamical behaviour by evaluating the
transition amplitude of the particle. In Section 2, we saw that the solution describing the motion of the
particle reduces to one of a free particle as γ → 0 and t → 0, or when γt = π/4. In Section 3, we evaluated
the exact path integral to yield the result of the form

K (q′′, t′′; q′, t′) = F (t′′, t′) exp
[

i

�
Sc(q′′, t′′; q′, t′)

]
. (36)

Here, F (t′′, t′) is independent of the space coordinate q′′, t′′ and Sc(q′′, t′′; q′, , t′)is the classical action function
connecting the initial and final space-time points (q′, t′)and (q′′, t′′) as given in equation (21) and equation
(36), respectively.

Finally, the propagator evaluated in equation (22) combining equation (21) and (36) reduced to the
time-independent by taking the limits γ → 0, t → 0 or γt = π/4, which agrees with the known solution of
the harmonic oscillator in the field of an external source.
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