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Abstract

Field equations in the presence of a perfect fluid distribution for static plane symmetric metric are

obtained in the scale invariant theory of gravitation proposed by Wesson [1]. A static Zeldovich fluid

model corresponding to perfect fluid is presented. Physical and kinematical properties of the model are

discussed.
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1. Introduction

In order to modify Einstein’s theory of gravitation in certain aspects, several theories of gravitation
have been proposed from time to time. Prominent among them are scalar-tensor theories of gravitation
formulated by Brans and Dicke [2], Nordtvedt [3], Wagoner [4], Ross [5], Dunn [6] and Saez and Ballester
[7]. In the Brans-Dicke theory, there exists a variable gravitation parameter. Wesson [1] formulated a scale
invariant theory of gravitation, which also admits a variable G as a viable alternative to scale covariant
theory of gravitation (Canuto et al.; [8, 9]). In the scale invariant theory of gravitation, Einstein equations
have been written in a scale-independent way by performing the conformal or scale transformation as

ḡij = β2
(
xk

)
gij, (1.1)

where the gauge function β (0 < β < ∞), in its most general formulation, is a function of all space-time
coordinates. Thus using the conformal transformation of the type given by equation (1.1), Wesson [1]
transforms the usual Einstein field equations into

Gij + 2
β;ij

β
− 4

β,iβ,j

β2
+

(
gab β,aβ,b

β2
− 2gab β;ab

β

)
gij + Λ0β

2gij = −κTij (1.2)

Gij ≡ Rij −
1
2
Rgij. (1.3)

In these equations, Gij is the conventional Einstein tensor involving gij. Semicolon and comma, respectively,
denote covariant differentiation with respect to gij and partial differentiation with respect to coordinates.
Rij is the Ricci tensor, and R is the Ricci scalar. The cosmological term Λgij of Einstein theory is now
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transformed to Λ0β
2gij in scale invariant theory with a dimensionless cosmological constant Λ0. G and κ

are, respectively, the Newtonian and Wesson’s gravitational parameter. Tij is the energy momentum tensor
of the matter field and κ = 8πG

c4 . A particular feature of this theory is that no independent equation for β

exists.
Beesham [10, 11, 12], Reddy and Venkateswaralu [13], Mohanty and Mishra [14, 15] have investigated

several aspects of this theory of gravitation. Recently Mishra [16] have investigated the problem of non-
static plane symmetric perfect fluid distribution in scale invariant theory of gravitation with a time dependent
gauge function.

2. Field Equations

The non-static plane symmetric metric with a gauge function β = β (ct) can be given as

ds2
W = β2ds2

E (2.1)

with
ds2

E = e2A
(
c2dt2 − dx2

)
− e2B

(
dy2 + dz2

)
, (2.2)

where A = A (t), B = B (t) , and c is the velocity of light. dsW and dsE represent the intervals in Wesson
and Einstein theory of gravitation, respectively.

The energy momentum tensor for a perfect fluid can be given as

Tm
ij =

(
pm + ρmc2

)
UiUj − pmgij (2.3)

together with
gijUiUj = 1, (2.4)

where U iis the four velocity vector of the fluid. pmand ρmare proper isotropic pressure and energy density
of the matter, respectively.

The non-vanishing components of conventional Einstein’s tensor (1.3) for the metric (2.2) can be obtained
as

G11 ≡ 1
c2

[
2B44 + 3B2

4 − 2A4B4

]
(2.5)

G22 = G33 ≡ e2B

c2e2A

[
A44 + B44 + B2

4

]
(2.6)

G44 ≡ −
[
B2

4 + 2A4B4

]
. (2.7)

From here on, the suffix 4 after a field variable denotes exact differentiation with respect to time t only.
Using the comoving coordinate

(
0, 0, 0, ceA

)
, the non-vanishing components of the field equation (1.2)

for the metric (2.1) can be written in the explicit form

G11 = −κpme2A − 1
c2

[
2
β44

β
− β2

4

β2
+ (−2A4 + 4B4)

β4

β
− Λ0β

2c2e2A

]
(2.8)

G22 = G33 = −κpme2B − e2B

c2e2A

[
2
β44

β
− β2

4

β2
+ (2B4)

β4

β
− Λ0β

2c2e2A

]
(2.9)

G44 = −κρmc4e2A +
[
3
β2

4

β2
+ (2A4 + 4B4)

β4

β
− Λ0β

2c2e2A

]
. (2.10)

Now, equation (1.2) and equations (2.8)–(2.10) suggest the definition of quantities pv(vacuum pressure) and
ρv(vacuum density), which involve neither the Einstein tensor of conventional theory nor the properties of
conventional matter [1]. These two quantities can be obtained as

2
β44

β
− β2

4

β2
+ (−2A4 + 4B4)

β4

β
− Λ0β

2c2e2A = κpvc
2e2A (2.11)
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2
β44

β
− β2

4

β2
+ (2B4)

β4

β
− Λ0β

2c2e2A = κpvc2e2A (2.12)

3
β2

4

β2
+ (2A4 + 4B4)

β4

β
− Λ0β

2c2e2A = −κρvc4e2A. (2.13)

When there is no matter and the gauge function β is a constant, one can recover the relation

c2ρv = −c4 λGR

8πG
= −pv, (2.14)

which is the equation of state for vacuum. pv is dependent on constants λGR, G and c is uniform in all
directions and hence isotropic in nature. The cosmological model with the equation of state is rare in the
literature and is known as ρ-vacuum universe or false vacuum or degenerate vacuum model [17–20]. The
corresponding model in static case is the well-known De Sitter model. Hence pv being isotropic is consistent
only when

A = B + k1, (2.15)

where k1is an integrating constant, since β4 �= 0.
Using the consistency condition (2.15), pressure and energy density for the vacuum case reduce to

pv =
1

κc2e2A

[
2
β44

β
− β2

4

β2
+ (2A4)

β4

β
− Λ0β

2c2e2A

]
(2.16)

ρv =
1

κc4e2A

[
3
β2

4

β2
+ (6A4)

β4

β
− Λ0β

2c2e2A

]
. (2.17)

Here, pv and ρv relate to the properties of vacuum only in conventional physics. The definition of pv and ρv

are natural as regards to the scale invariant properties of the vacuum (see Wesson, [1]). The total pressure
and energy density can be defined as

pt ≡ pm + pv (2.18)

ρt ≡ ρm + ρv. (2.19)

Using the aforementioned definition of pt and ρt, the field equations in scale invariant theory of gravity, i.e.
equations (2.8)–(2.10), can now be written by using the components of Einstein tensor (2.5)–(2.7) and the
results obtained in equations (2.15)–(2.17) as:

2A44 + A2
4 = −κptc

2e2A (2.20)

3A2
4 = κρtc

4e2A. (2.21)

3. Solutions of the Field Equations

Equations (2.20)–(2.21) are two equations with three unknowns, viz. pt, ρt and A. For complete deter-
minacy one extra condition is required. So, the equation of state pt = ρtc

2, i.e. Zeldovich fluid model, is
considered. Also, β = 1

ct .
Using the equation of state pt = ρtc

2, equations (2.20) and (2.21) yield

A = log (2t + k3)
1/2 + k2, (3.1)

where k2 and k3 are constants of integration.
Without loss of generality, k1 = 0 is assumed in equation (2.15). Subsequently

A = B = log (2t + k3)
1/2 + k2. (3.2)
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The total pressure pt and total energy density ρt can be calculated as

pt = ρtc
2 =

3

κc2e2k2 (2t + k3)
3 . (3.3)

The vacuum pressure pv and vacuum energy density ρvcan be calculated as

pv =
1

κc2e2k2

[
1

t2 (2t + k3)
− 2

t (2t + k3)
2 − Λ0e

2k2

t2

]
(3.4)

ρv =
1

κc4e2k2

[
3

t2 (2t + k3)
− 6

t (2t + k3)
2 − Λ0e

2k2

t2

]
. (3.5)

The matter pressure pm and matter energy density ρm can be calculated as

pm =
1

κc2e2k2

[
3

(2t + k3)
3 − 1

t2 (2t + k3)
− 2

t (2t + k3)
2 − Λ0e

2k2

t2

]
(3.6)

ρm =
1

κc4e2k2

[
3

(2t + k3)
3 − 3

t2 (2t + k3)
+

6
t (2t + k3)

2 +
Λ0e

2k2

t2

]
. (3.7)

So, the Zeldovich static plane symmetric model in scale invariant theory can be given by equations (2.15),
(3.2) and (3.3). The metric for this case can be written as

ds2
W =

1
c2t2

[
e2k2 (2t + k3)

{
c2dt2 − dx2 − dy2 − dz2

}]
. (3.8)

4. Some Physical and Kinematical Properties of the Model

In this section, the physical and kinematical properties of the cosmological model given by equation (3.8)
have been studied.

The scalar expansion of the model can be calculated as

Θ = U i
;i =

3
ce2k2 (2t + k3)

2 , (4.1)

from which it is evident that Θ → 0 as t → ∞ and Θ → 3
ce2k2k2

3
(constant) as t → 0. So, the universe is

expanding with increase of time and the rate of expansion is slow with increase in time.
It has also been observed that,

ρm

Θ2
→ ∞ as t → 0 and

ρm

Θ2
→ constant as t → ∞, (4.2)

which confirms the homogeneity nature of the space-time during evolution. Further,

ρm → ∞ as t → 0 and ρm → 0 as t → ∞, (4.3)

which indicates that there is a big bang like singularity at initial epoch.
The shear scalar σ = 0 indicates that the shape of the universe remains unchanged during evolution.

Moreover, since σ2

Θ2 = 0, the space-time is isotropized during evolution in scale invariant theory. As the
acceleration is found to be zero, the matter particle follows geodesic path in this theory. The vorticity W of
the model vanishes, which indicates that U i is hypersurface orthogonal.

The spatial volume of the model is found to be

V = e3k2 (2t + k3)
3/2

. (4.4)
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So, V = 0 at t0 = −k3/2, which shows that the universe starts evolution with zero volume at t = t0and
expands with t.

The deceleration parameter q for the model (3.8) can be obtained as

q = −3θ2

[
θ;αuα +

1
3
θ2

]
=

54
e4k2 (2t + k3)

6 . (4.5)

The positive value of the deceleration parameter shows that the model decelerates in the standard way.

5. Conclusion

It is well known that plane symmetric solutions are important in the study of relativistic cosmology and
Astrophysics. Here, plane symmetric static Zeldovich fluid model in the presence of perfect fluid distribution,
in scale invariant theory of gravitation is obtained. As far as matter is concerned, the model admits big bang
singularity at initial epoch. It is also observed that the model decelerates in a standard way. Moreover, the
universe starts evolution with zero volume and expands with time t.
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