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Abstract

Tilted Bianchi Type I perfect fluid cosmological model in presence of magnetic field is investigated. To

get a determinate solution, we assume p = 0 and A = BC, where A , B and C are metric potentials. A

special model is also investigated in the absence of magnetic field. The various physical and geometrical

aspects of both the models are also discussed. The effect of the magnetic field on the model is also discussed.
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1. Introduction

Homogeneous and anisotropic cosmological models have been studied widely in the framework of general
relativity. These models are more restricted than the inhomogeneous models. In spite of this, they explain
a number of observed phenomena quite satisfactorily. In recent years, there has been a considerable interest
in investigating spatially homogeneous and anisotropic cosmological models in which matter does not move
orthogonal to the hyper surface of homogeneity. Such types of models are called tilted cosmological models.

The general dynamics of these cosmological models have been studied in detail by King and Ellis [1],

Ellis and King [2], Collins and Ellis [3]. Ellis and Baldwin [4] have investigated that we are likely to be living in

a tilted universe and they have indicated that how we may detect it. King and Ellis [1] have found that there
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is no Bianchi Type I tilted models if it has been obtained under the assumption that matter takes the perfect
fluid form in which

T j
i = (ε + p)νiν

j + pgj
i + qiν

j + νiq
j + Ej

i

νiν
j = −1 ε > 0, p > 0.

ν i is the velocity flow vector and ε , p are the density and pressure of the fluid, and T j
i denotes the

energy-momentum tensor. Dunn and Tupper [5] have shown that a Bianchi tilting universe is possible when an
electromagnetic field is present.

Many authors have considered the behavior of individual Bianchi models that contain either a pure
magnetic field or magnetic field plus fluid. The magnetic field has significant role in cosmological scale and is
present in galactic and intergalactic spaces. Bianchi Type I magnetized orthogonal cosmological models have
been studied in detail due to their simplicity. The tilted cosmological models, in presence of magnetic fields are
more complicated than those of orthogonal universe.

Bianchi type I cosmological models have been studied by several authors in various context: such as
Mazumdar [6], Aguirregabiria [7], Yavuz [8], Beesham [9], Singh and Gupta [10], among others. Primordial

magnetic field of cosmological origin have been speculated by Asseo and Sol [11]. Mukherjee [12] has investigated
tilted Bianchi Type I universe with heat flux in general relativity, and has shown that the universe assumes a
pancake shape. The velocity vector is not geodesic and heat flux is comparable to energy density. Cosmological
models with heat flow have been studied by several authors[13–17]. Recently, Bali and Sharma [18] investigated
Tilted Bianchi Type I models with heat conduction filled with disordered radiation of perfect fluid in general
relativity. Bali and Meena [19] investigated magnetized stiff fluid tilted universe for perfect fluid distribution

in general relativity. Bali and Meena [20] also derived flat tilted Bianchi Type V cosmological model in general
relativity.

In general relativity, a dust solution is an exact solution of the Einstein field equation in which the
gravitational field is produced entirely by the mass, momentum and stress density of a perfect fluid which has
positive mass energy density but vanishing pressure. Banerjee and Banerjee [21] studied stationary distribution

of dust and electromagnetic fields in general relativity. Bali and Sharma [22] have investigated tilted Bianchi
Type I dust fluid and shown that model has cigar type singularity when T = 0.

Banerjee et al. [23] have investigated an axially symmetric Bianchi Type I string dust cosmological model

in presence and absence of magnetic field. Recently, Bali and Upadhaya [24] have investigated LRS Bianchi
Type I strings dust-magnetized cosmological models using the condition σ ∝ θ , where σ is shear and θ is
scalar of expansion which leads to A = αBn , where n is constant. Concerning the tilted perfect fluid models,
Bradley [25] has stated that a tilted dust self-similar model does not exist.

In this paper, we have investigated Bianchi Type I tilted dust fluid cosmological model in the presence
and absence of magnetic field. To get a determinate solution, we have also assumed a supplementary condition
A=BC between metric potential. The various physical and geometrical aspects of the models are discussed.
The effect of magnetic field has also been studied. The magnetic field is due to an electric current produced
along x-axis.
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2. The Metric and Field Equations

We consider the metric in the form

ds2 = −dt2 + A2dx2 + B2dy2 + C2dz2, (1)

where A , B and C are functions of cosmological time t alone.

The energy-momentum tensor for perfect fluid distribution with heat conduction is taken into the form
given by Ellis [26] as

T j
i = (ε + p)νiν

j + pgj
i + qiν

j + νiq
j + Ej

i , (2)

together with

gijν
iνj = −1, (3)

qiq
j > 0, (4)

qiν
i = 0. (5)

Here, Ej
i is the energy-momentum tensor of electromagnetic field given by Lichnerowicz [27] as

Ej
i = μ̄

[
|h|2

(
νiν

j +
1
2
gj

i

)
− hih

j

]
, (6)

where μ̄ is magnetic permeability and hi the magnetic flux vector defined by

hi =
√−g

2μ̄
εijk�F

k�νj. (7)

Fk� is the electromagnetic field tensor and εijk� is the Levi-Civita tensor density, p is pressure, ε is density,

and qi is heat conduction vector orthogonal to the fluid flow vector ν i . The fluid flow vector ν i has the
components ((sinh λ)/A , 0, 0, cosh λ), satisfying condition (3); and λ is the tilt angle. Thus

ν1 =
sinhλ

A
, ν2 = 0, ν3 = 0, ν4 = cosh λ (8)

We take the incident magnetic field in the direction of x-axis so that

h1 �= 0, h2 = 0, h3 = 0, h4 �= 0.

Due to the assumption of infinite electrical conductivity of the fluid we also find that

F14 = 0 = F24 = F34 . Using these assumption in the equation (7), it is easy to get F12 = F13 = 0. Thus
the only non-vanishing component of Fij is F23 .

The first set of Maxwell’s equations

Fij;k + Fjk;i + Fki;j = 0, (9)
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leads to [
∂Fij

∂xk
− Γ�

jk Fi� − Γ�
ikF�j

]
+

[
∂Fjk

∂xi
− Γ�

kiFj� − Γ�
jiF�k

]
+

[
∂Fki

∂xj
− Γ�

ij Fk� − Γ�
kjF�i

]
= 0

or [
∂Fij

∂xk
+

∂Fjk

∂xi
+

∂Fki

∂xj

]
− Γ�

jk(Fi� + F�i) − Γ�
ki(Fj� + F�j) − Γ�

ij (Fk� + F�k) = 0,

which again leads to [
∂Fij

∂xk
+

∂Fjk

∂xi
+

∂Fki

∂xj

]
= 0, (10)

which shows that ∂F23
∂x4 = 0. (11)

Above, the F ’s in (9) denote covariant derivatives and Γ is a Christoffel symbol.

Therefore, F23 = constant = H (say).

From equation (7), we have

h1 = AH
μ̄BC

coshλ

h4 = −H
μ̄BC sinhλ,

(11)

and

|h|2 = hih
i = h1h

1 + h4h
4 = g11(h1)2 + g44(h4)2 =

H2 cosh2 λ

μ̄2B2C2
− H2 sinh2 λ

μ̄2B2C2
=

H2

μ̄2B2C2
. (12)

In (11), μ̄ is magnetic permeability. Hence equation (6) leads to

E1
1 =

−H2

2μ̄B2C2
= −E2

2 = −E3
3 = E4

4 . (13)

The Einstein’s field equation is

Rj
i −

1
2
Rgj

i = −8πT j
i , (c = G = 1). (14)

The field equation for the line element (1) hence leads to the following set of equations:

B44

B
+

C44

C
+

B4C4

BC
= −8π

[
(ε + p)sinh

2
λ + p + 2q1

sinhλ

A
− H2

2μ̄B2C2

]
, (15)

A44

A
+

C44

C
+

A4C4

AC
= −8π

[
p +

H2

2μ̄B2C2

]
, (16)

A44

A
+

B44

B
+

A4B4

AB
= −8π

[
p +

H2

2μ̄B2C2

]
, (17)

A4B4

AB
+

A4C4

AC
+

B4C4

BC
= −8π

[
−(ε + p)cosh2

λ + p − 2q1
sinhλ

A
− H2

2μ̄B2C2

]
, (18)

(ε + p)Asinhλ coshλ + q1coshλ + q1
sinh2 λ

coshλ
= 0, (19)

where the suffix “4” denotes ordinary differentiation with respect to cosmic time t alone.
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3. Solution of the Field Equations

Equations from (15) to (19) are five equations in seven unknowns: A , B , C , ε , p , λ and q1 . For
complete determination of these quantities, we assume two more conditions:

(i) The model is filled with dust or perfect fluid which leads to

p = 0. (20)

(ii) A metric potential such that

A = BC. (21)

Equations (15) and (19) lead to the relation

B44

B
+

C44

C
+

2B4C4

BC
+

A4

A

(
B4

B
+

C4

C

)
= 8π (ε − p) +

8πH2

μ̄B2C2
. (22)

From equations (20) and (22), we have

B44

B
+

C44

C
+

2B4C4

BC
+

A4

A

(
B4

B
+

C4

C

)
= 8πε +

8πH2

μ̄B2C2
, (23)

which leads to the relation

B44

B
+

C44

C
+

2B4C4

BC
+

A4

A

(
B4

B
+

C4

C

)
= 8πε +

K

B2C2
, (24)

where

K =
8πH2

μ̄
. (25)

From equations (16) and (17), we have the relation

B44

B
+

A4B4

AB
− C44

C
− A4C4

AC
= 0, (26)

which leads to
ν4

ν
=

a

μ2
, (27)

where BC = μ , ν = B
C and a is constant of integration.

With the help of (25), equations (16) and (17) can also yield

2A44

A
+

B44

B
+

C44

C
+

A4C4

AC
+

A4B4

AB
= − 16πp − K

B2C2
. (28)

For the dust fluid, equation (28) reduces to

2A44

A
+

B44

B
+

C44

C
+

A4C4

AC
+

A4B4

AB
=

−K

B2C2
. (29)
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Using (21) in equation (29), equation (29) becomes

6μ44

μ
+

μ2
4

μ2
+

ν2
4

ν2
=

−2K

μ2
. (30)

With the help of (27), (30) reduces in the form

6μ44

μ
+

μ2
4

μ2
+

a2

μ4
=

−2K

μ2
. (31)

Equation (31) leads to

2ff1 +
f2

3μ
=

−a2

3μ3
− 2K

3μ
, (32)

where μ4 = f(μ).

Equation (32) leads to

f2 =
1

5μ2

[
a2 − 10Kμ2 + 5bμ5/3

]
, (33)

where b is constant of integration.

From the equation (27), we have

logν = a
√

5
∫

dμ

μ
√

a2 − 10Kμ2 + 5bμ5/3
. (34)

Hence the metric (1) becomes

ds2 = −dμ2

f2
+ μ2dx2 + μνdy2 +

μ

ν
dz2, (35)

where ν is determined by (34).

Introducing the transformations

T = μ , X = x , Y = y , Z = z ,

the metric (35) reduces to the form

ds2 =
[ −5T 2

a2 − 10KT 2 + 5bT 5/3

]
dT 2 + T 2dX2 + TνdY 2 +

T

ν
dZ2, (36)

where

logν = a
√

5
∫

dT

T
√

a2 − 10KT 2 + 5bT 5/3
. (37)

4. Some Physical and Geometrical Features

The density for the model (36) is given by

8πε =

(
5b − 18KT 1/3

)
6T 7/3

. (38)
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The reality conditions given by Ellis,

(i) ε + p > 0,

(ii) ε + 3p > 0,

leads to the condition

T 1/3 >
5b

18K
. (39)

The tilt angle λ for the model (36) is given by

coshλ =
1
2

√
36KT 1/3 − 15b

9KT 1/3 − 5b
, (40)

sinhλ =
1
2

√
5b

9KT 1/3 − 5b
. (41)

The scalar of expansion θ calculated for the flow vector vi is given by

θ =
3

4T 2

(
108KT 2/3 − 110KbT 1/3 + 25b2

)
×

√
(a2 − 10KT 2 + 5bT 5/3)

5(36KT 1/3 − 15b)(9KT 1/3 − 5b)3
. (42)

The components of fluid flow vector v i and heat conduction vector qi for the model (36) are given by

v1 =
1

2T

√
5b

9KT 1/3 − 5b
, (43)

v4 =
1
2

√
36KT 1/3 − 15b
9KT 1/3 − 5b

, (44)

q1 =
(36KT 1/3 − 15b)

192πT 10/3

√
5b

9KT 1/3 − 5b
, (45)

q4 = − 5b

192πT 7/3

√
36KT 1/3 − 15b
9KT 1/3 − 5b

. (46)

The non-vanishing components of shear tensor (σ ij) and rotation tensor (ω ij) are given by the following

relations:

σ11 =
1
48

√
(a2 − 10KT 2 + 5bT 5/3)(36KT 1/3 − 15b)

(9KT 1/3 − 5b)5
×

[
2(36KT 1/3 − 15b)(9KT 1/3 − 5b) − 30KT 1/3

]
(47)

σ22 =
ν

12T

√
(a2 − 10KT 2 + 5bT 5/3)(36KT 1/3 − 15b)

(9KT 1/3 − 5b)
×

[
15bKT 1/3

(36KT 1/3 − 15b)(9KT 1/3 − 5b)
+

3
√

5a√
a2 − 10KT 2 + 5bT 5/3

− 1

] (48)
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σ33 =
1

12νT

√
(a2 − 10KT 2 + 5bT 5/3)(36KT 1/3 − 5b)

5(9KT 1/3 − 5b)
×

[
15bKT 1/3

(36KT 1/3 − 15b)(9KT 1/3 − 5b)
− 3

√
5a√

a2 − 10KT 2 + 5bT 5/3
− 1

] (49)

σ44 =
√

5b

24T 2

√
(a2 − 10KT 2 + 5bT 5/3)(36KT 1/3 − 15b)

(9KT 1/3 − 5b)3
×

[
1 − 15bKT 1/3

(9KT 1/3 − 5b)(36KT 1/3 − 15b)

]
(50)

σ14 =
5

24T

(
1320bKT 1/3 − 1134K2T 2/3 − 375b2

)
×

√
(a2 − 10KT 2 + 5bT 5/3)5b

(9KT 1/3 − 5b)5
(51)

ω14 =

√
b(a2 − 10KT 2 + 5bT 5/3)

(9KT 1/3 − 5b)5

[
432K2T 2/3 − 45KbT 1/3 + 25b2

32

]
. (52)

The rates of expansion Hi in the direction of the x, y and z axes are given by

H1 =
1√
5T 2

√
a2 − 10KT 2 + 5bT 5/3, (53)

H2 =
1

2
√

5T 2

[√
a2 − 10KT 2 + 5bT 5/3 +

√
5a

]
, (54)

H3 =
1

2
√

5T 2

[√
a2 − 10KT 2 + 5bT 5/3 −

√
5a

]
. (55)

5. Special Model

When the magnetic field is absent i.e. K = 0, equation (34) reduces to

logν =
√

5a

∫
dμ

μ
√

a2 + 5bμ5/3
. (56)

Putting a2 + 5bμ5/3 = ξ2 in (56), we have

ν = �

[√
5bμ5/3 + a2 − a√
5bμ5/3 + a2 + a

] 3√
5

, (57)

where � is a constant of integration.

Using the value of ν from (57), and after making suitable transformations, metric (35) reduces to

ds2 = −
[

5T 2

5bT 5/3 + a2

]
dT 2 + T 2dX2 + T

[ √
5bT 5/3 + a2 − a√
5bT 5/3 + a2 + a

]3/
√

5

dY 2

+
∫

T

[√
5bT 5/3 + a2 + a√
5bT 5/3 + a2 − a

]3/
√

5

dZ2

(58)
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By setting μ = T , where A = (BC) = μ , B/C = ν .

There is a Cigar type singularity in the model at T = 0. Near the origin, the metric (58) reduces (for

small T ) to the form

ds2 = −
(

5T 2

a2

)
dT 2 + T 2dX2 +

(
5b

4a2
T 1+

√
5

)
dY 2 +

(
5b

4a2
T 1−

√
5

)
dZ2. (59)

After making some suitable transformations it reduces to the form

ds2 = −dτ2 + τdX2 + τ
1+

√
5

2 dY 2 + τ
1−

√
5

2 dZ2. (60)

This is analogous to the Kasner’s form as obtained by Bali and Sharma [28].

For the model (58), density ε and tilt angle λ are given by

ε =
5b

48πT 7/3
, (61)

cosh λ =
√

3/2. (62)

Reality conditions given by Ellis leads to b < 0.

Scalar of expansion θ , the non-vanishing components of (σ ij) and (ω ij) are given by the following set

of equations:

θ =
1
T 2

√
3(a2 + 5bT 5/3)

5
, (63)

σ11 =
3
8

√
3
5

(a2 + 5bT 5/3), (64)

σ22 =
1

4
√

20 T

[√
5bT 5/3 + a2 − a√
5bT 5/3 + a2 + a

]3/
√

5

×
[
3
√

5 a −
√

a2 + 5bT 5/3
]
, (65)

σ33 =
−1

4
√

20 T

[√
5bT 5/3 + a2 + a√
5bT 5/3 + a2 − a

]3/
√

5

×
[
3
√

5 a −
√

a2 + 5bT 5/3
]
, (66)

σ44 =
−1

8
√

15 T 2

√
a2 + 5bT 5/3, (67)

ω14 =
1
32

√
−(a2 + 5bT 5/3)

5
. (68)

6. Concluding Remarks

The model described in (36 starts to expand with a big-bang at T = 0 and decreases as T increases,
then stops at T = ∞ . The model has a real singularity at T = 0. The model in general represents a shearing,
rotating and tilted universe in the presence of magnetic field. At the initial stage from where the model starts
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to expand the energy density ε = ∞ where as ε = 0 at T = ∞ , thus the metric is asymptotically empty.

Initially, tilt angle is given by cosh λ =
√

3/2 and at T = ∞ , the model reduces to a non-tilted universe in

nature and fluid distribution tends to be comoving. The velocity components of the fluid flow ν1 = ∞ and

ν4 =
√

3/2at T = 0. The components of heat conduction vector q1 and q4 become infinitely large (+∞)

and (t∞) initially and approaches zero asymptotically, so at this stage they become ineffective. The Hubble

components also become infinitely large (+∞) at this stage whereas at T = ∞ , the velocity components ν 1

= 0 and ν 4 = 1. Hubble components also vanish asymptotically. The reality conditions put a restriction on

b as, b > 0. It is interesting that for T =
(

5b
12K

)3
, model (36) stops to expand; when T =

(
5b
9K

)3
, it expands

infinitely. This model does not approach isotropy for large values of T . We emphasize (36) is a tilted model;
but if we consider the constant of integration b = 0, then the tilt angle λ = 0. Therefore, in this case, there is
no tilt in the model and the model reduces to a non-tilted case which is the basic requirement for an orthogonal
metric. Furthermore, shear component σ 44 = 0 and rotation component ω 14 also vanish. This is due to the

orthogonality of shear and rotation to four velocity, the rotation tensor ω 14 = 0, q1 = 0, q4 = 0, ν 1 = 0 and

ν 4 = 0. In this case model reduces to a non-tilted model as per the requirement of King and Ellis. But in this
situation we cannot study the effect of the magnetic field on the model. So, we did not consider b = 0.

In the absence of the magnetic field, (36) reduces to (58). The initial singularity of the model is of Cigar
type. The model in this case represents, in general, a rotating, shearing and tilted universe. The model starts
to expand with a big-bang at T = 0 and continues decreasing as T increases, and finally stops at T = 0. At
the initial stage density becomes infinitely large (t∞) and for the later stage metric becomes asymptotically
empty. The tilt nature of the model is also preserved as constant throughout the evolution. This model also
does not approach isotropy for large values of T .

Thus, to see the effect of the magnetic effect, we can conclude that as the magnetic field increases, the
value of cosh λ decreases therefore tilt angle also decreases. Therefore, higher magnetic field is required to
maintain its non-tilt nature where as on the later stages model automatically approaches to non-tilted one. The

fluid flow velocity components ν 1 and ν 4 also decrease as the magnetic field increases. The heat conduction

component q1 increases with the magnetic field but q4 decreases in opposite direction. Hubble components
decrease as magnetic field increases. For both the cases the model does not approach isotropy for large values
of T .
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