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Abstract

By using the first-integral method, an exact peaked wave solution to the K(2, 2) equation with osmosis

dispersion has been obtained directly. The obtained solution agrees well with the previously known solution

in the literature. The first integral method is easier and quicker than other traditional techniques. It is

shown that the first integral method is a standard and direct method, which may allow us to solve other

more complicated solitary wave problems.
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1. Introduction

In 1993, Rosenau and Hyman [1] presented and studied a family of fully nonlinear KdV equations (also

denoted by K(m, n)) as

ut + (um)x + (un)xxx = 0, m > 0, 1 < n ≤ 3. (1.1)

They obtained a class of compactons of equation (1.1). Wazwaz [2] discussed two generalized forms of the

K(n, n) and KP equations that exhibit compactons. In [3], the nonlinear K(m, n) equation was studied for

all possible values of m and n . Lately, Wazwaz [4] gave explicit traveling wave solutions of variants of the

K(m, m) equation with compact and noncompact structures. By using the Adomian decomposition method,

Wazwaz [5,6] studied the K(m, n) equation

ut + a(um)x + (un)xxx = 0, (1.2)
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and obtained a compacton solution for a = 1 and a peakon solution for a = −1. Recently, Xu and Tian [7] pro-

posed and investigated the peaked wave solutions of the following K(2, 2) equation with osmosis dispersion(also

called “osmosis K(2, 2) equation”)

ut + (u2)x − (u2)xxx = 0, (1.3)

which plays an important role in the research of motion laws of liquid drop and mixed flowing matter.

As is well known that searching for solitary solutions of nonlinear equations in mathematical physics has
become more and more attractive in solitary theory. In order to obtain the exact solutions, a number of methods
have been proposed, such as the homogeneous balance method [8], the hyperbolic tangent expansion method

[9], the Jacobi elliptic function expansion method [10], F-expansion method [11], sine-cosine method [12], tanh

function method [13] and so on. Recently, a new powerful method, the first integral method, which is based on

the ring theory of commutative algebra, has been proposed by Feng [14] and developed to study the traveling

wave solutions of various nonlinear evolution equations [15–19]. Different from other traditional methods, the
first integral method has many advantages, which is mainly embodied in that it could avoid a great deal of
complicated and tedious calculation and provide more exact and explicit traveling solitary solutions with high
accuracy.

In the present work, we would like to extend the first integral method to solve the osmosis K(2, 2)
equation.

The remainder of this paper is organized as follows. In section 2, using the first-integral method, we
establish the exact peaked wave solution for equation (1.3), which is full agreement with the previously known
result in the literature. However, the used first integral method is easier and quicker than other traditional
techniques. Finally, some conclusions are given in section 3.

2. Exact Peaked Wave Solution for Equation (1.3)

In this section, we start out our study examining equation (1.3). Assume (1.3) has the traveling wave
solution as

u(x, t) = φ(ξ), ξ = x − ct, (2.1)

where c is wave velocity. Substituting (2.1) into equation (1.3) yields

−cφ′ + 2φφ′ − 6φ′φ′′ − 2φφ′′′ = 0, (2.2)

where φ′ and φ′′ denote dφ
dξ and d2φ

dξ2 , respectively.

Integrating (2.2) once, it would become

−cφ + φ2 − 2(φ′)2 − 2φφ′′ = g, (2.3)

where g is an arbitrary integral constant.

If we let dφ
dξ

= y , then equation (2.3) can be rewritten as the two-dimensional autonomous system

{
dφ
dξ = y,
dy
dξ

= g+cφ−φ2+2y2

−2φ
.

(2.4)
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Making the following transformation
dξ = −2φdτ, (2.5)

then system (2.4) becomes {
dφ
dτ

= −2φy,
dy
dτ = g + cφ− φ2 + 2y2.

(2.6)

In order to find the traveling wave solutions of equation (1.3), we now applying the first-integral method,
the key idea of which is to utilize the so-called Divisor theorem which is based on the ring theory of commutative
algebra and to obtain first integrals to system (2.6) under various parameter conditions. Then using these

first integrals, the above two-dimensional autonomous system (2.6) can be reduced to some different first-
order integrable differential equations. Finally, through solving these first-order differential equations directly,
traveling wave solutions for equation (1.3) can be established easily.

Next, let us recall the Divisor Theorem for two variables in the complex domain C [16].

2.1. Divisor Theorem

Suppose that P (ω, z) and Q(ω, z) are polynomials of two variables ω and z in C[ω, z] and P (ω, z) is

irreducible in C[ω, z] . If Q(ω, z) vanishes at all zero points of P (ω, z), then there exists a polynomial G(ω, z)

in C(ω, z) such that

Q(ω, z) = P (ω, z)G(ω, z).

As Feng [19] pointed out, the Divisor Theorem follows immediately from Hilbert’s Nullstellensatz theorem

in commutative algebra [20].

Now, we apply the above Divisor Theorem to look for the first integral of system (2.6). Suppose that

φ = φ(τ ) and z = z(τ ) are the nontrivial solutions to (2.6), and Ω(φ, y) =
m∑

i=0
ai(φ)yi is an irreducible

polynomial in C(φ, y) such that

Ω(φ(ξ), y(ξ)) =
m∑

i=0

ai(φ)yi = 0, (2.7)

where ai(φ)(i = 1, 2, . . . , m) are polynomials of φ and am(φ) �= 0. We start our study with m = 1. Note that
dΩ
dτ is a polynomial of φ and y , and Ω(φ(τ ), y(τ )) = 0 implies that dΩ

dτ |(2.6) = 0. According to the Divisor

Theorem, there exists a polynomial H(φ, y) = p(φ) + q(φ)y in C(φ, y) such that

dΩ
dτ

|(2.6) = H(φ, y)Ω(φ, y), (2.8)

that is

1∑
i=0

a′
i(φ)yi · (−2φy) +

1∑
i=0

ai(φ)iyi−1 [g + cφ − φ2 + 2y2] = [a0(φ) + a1(φ)y][p(φ) + q(φ)y]. (2.9)

Equating the coefficients of yi(i = 2, 1, 0) on both sides of (2.9), we obtain that

e′(φ) = B(φ) · e(φ), (2.10)
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and [
g + cφ − φ2,−p(φ)

]
· e(φ) = 0, (2.11)

where e(φ) = (a1(φ), a0(φ))T and

B(φ) =

(
2−q(φ)

2φ 0
p(φ)
−2φ

q(φ)
−2φ

)
.

Since ai(φ)(i = 0, 1) are polynomials of φ , from (2.10), we can deduce that q(φ) must be a constant, and

a1(φ) = c0e
∫

2−q(φ)
2φ dφ , where c0 is integral constant. Obviously, the simplest case for a0(φ) and a1(φ) is that

q(φ) = 2. That is, a1(φ) is a constant. For computational convenience, we assume that a1(φ) = 1. Meanwhile,

from (2.10), we have

p(φ) = −2a′
0(φ)φ − 2a0(φ), (2.12)

which implies that deg p(φ) ≤ deg a0(φ).

From (2.11), we have also

p(φ) · a0(φ) = g + cφ − φ2.

It means that when both p(φ) and a0(φ) are all polynomials of φ , so we can deduce that deg p(φ) = deg a0(φ) =
1.

Without loss of generality, we assume that a0(φ) = A0 + A1φ, p(φ) = B0 + B1φ , where Ai, Bi(i = 0, 1)

are all constants to be determined. Substituting them into Eqs.(2.10)–(2.11) and equating the corresponding

coefficients of φ2, φ and constant terms, we have

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A0B0 = g,
A1B0 + A0B1 = c,
A1B1 = −1,
B0 = −2A0,
B1 = −4A1.

(2.13)

Solving equation (2.13), we can obtain that

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A0 = ± c
3
,

B0 = ∓2c
3

,
A1 = ∓1

2
,

B1 = ±2,
g = −2

9
c2.

(2.14)

In this case, (2.7) becomes

y = ±(
c

3
− 1

2
φ). (2.15)

Using this first integral, the second-order ordinary differential equation (2.4) reduces to

dφ

dξ
= ±(

c

3
− 1

2
φ). (2.16)
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On integrating equation (2.16) and setting φ = 0 at ξ = 0, we obtain the solution

φ(ξ) = −2
3
ce−

1
2 |ξ| +

2
3
c, (2.17)

which implies that equation (1.3) has peaked wave solution

u(x, t) = −2
3
ce−

1
2 |x−ct| +

2
3
c, (2.18)

It is easy to see that peaked wave solution (2.18) agrees well with the solution described in [7]. However, it
should be noted here that the solution obtained by the bifurcation method of planar dynamical system requires
drawing the bifurcation of phase portraits which is not so with the solution obtained by the first integral method,
though the two solutions are in complete agreement.

3. Conclusions

In this paper, the first-integral method is directly applied to obtain the exact peaked wave solution for
the K(2, 2) equation with osmosis dispersion. It can be easily seen that the first integral method is easier and
quicker than other traditional techniques. So it indicates that the validity and great potential of this method
in solving complicated solitary wave problems.
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