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Abstract

The differential cross section of quasi-elastic neutrino scattering by nuclei is computed. The numerical

analysis of energy dependence of the spin asymmetry, the angular electron-neutrino (eν) correlation and the

charge asymmetry coefficients shows that the relative contribution of the second-class current (SCC) tensor

form factor can reach some tens of percents in the case of particular values of final nuclei alignment and

polarization.
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1. Introduction

The most general expressions for the matrix elements of vector currents Vμ and axial - vector currents

Aμ between nuclei states p1 and p2 are given by the formulae [1]

〈p1|Vμ |p2 〉 = ū(p1) [F1γμ + F2σμνqν + iFSqμ] u(p2)

〈p1|Aμ |p2 〉 = ū(p1) [FAγμ + FT σμνqν + iFP qμ] γ5u(p2),
(1)

where qμ = (p1 − p2)μ is the 4-momentum transfer to the nucleus, u(p1), u(p2) are Dirac spinor amplitudes,
F1 , FA are vector and axial-vector form factors, F2, FS, FT and Fp are respectively weak magnetic, effective

scalar, induced and induced pseudo-scalar form factors. All these form factors depend on the square transfer

momentumq2 :
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Fx

(
q2
μ

)
= Fx(0)/

(
1 + q2

μ/(855MeV )2
)2

,

Fp

(
q2
μ

)
= 2MFA(0)/

(
q2
μ + m2

π

)
where x = 1, 2, A, T, S, mπ and mπ is the pion mass, F1(0) = 1.0, FA(0) = −1.23, F1(0) + 2MF2(0) = μ(0) =

4.706, FT (0) = 5 ·10−3MeV −1 . We assume the conserved-vector-current hypothesis (CVC) in which case there
are no induced scalar currents, and the form factor FS is zero.

According to S. Weinberg classification [2], based on the G parity transformation (interchanging particles

with their anti-particles and rotating the system in isospin space around the T2 axis), vector and axial-vector

currents can be decomposed into first-class currents (FCC) and second-class currents (SCC). F1, F2, FA and Fp

are the form factors of the first-class currents and FS and FT are the form factors of the second class current.
Issue of second-class currents and their existence are being widely discussed. Some contradictions between

different experimental data do not allow a definite solution of this issue. For example, the experimental study

of angular distribution of positrons in β decay process of polarized 19Ne nucleus [3] and the study of angular

distribution of electron and positron in β decay from polarized 12B and 12N [4, 5], show the existence of SCC
whose tensor form factor is of the same order of magnitude as the form factor of weak magnetic interaction.
Yet, Morita’s data [6] show that the value of tensor form factor is next to zero within the limit of experimental
errors, in agreement with the hypothesis of SCC shutting.

An important development has arose in recent years, in which the experimental study of neutrino
interactions with nuclei offers opportunity to investigate subtle detail in the structure of the standard model as
well as that of the nucleon. Study of neutrino interaction can offer a solid understanding of cross sections in

neutrino-induced reactions, particularly with nuclei such as 12C, a component of liquid scintillators, and 16O,
the basic component of water Cerenkov detectors [7].

The present study deals with effects due to the possible existence of SCC in quasi-elastic neutrino (and

anti-neutrino) scattering by nuclei and the influence of polarization on the final nuclei on these effects.

2. Differential cross section of quasi-elastic neutrino (anti-neutrino)

scattering by nuclei

Second class-currents are difficult to detect without any assumption [8], so we try to extract SCC effects
by calculating the differential cross section of neutrino scattering by nuclei.

In first order of perturbation theory, the process of neutrino (anti-neutrino) scattering by nuclei described
here can be written as

ν(ν̃) + (A, Z) → (A, Z ± 1) + �−(�+) (2)

with matrix elements expressed as

Mfi = −GF√
2

�μJμ, (3)

where GF
∼= 10−5M−2 is Fermi coupling constant for weak interaction; M is the mass of the nucleus;

�μ = ū2γμ(1 + γ5)ū1 and Jμ = 〈f |
∫

dx exp(−iqx)Ĵμ(x) |i〉 are, respectively, leptonic and hadronic currents;
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uj(j = 1, 2) are Dirac spinor amplitudes; Ĵμ(x) is local current operator of nucleus; qμ = (q, iq0) ≡ (P� − Pν)μ

is the 4-momentum transfer to the nucleus; P� is the 4-momentum of electron for � = e− (and positron for

� = e+); Pν is the 4-momentum of neutrino (anti-neutrino). The initial (final) state of nucleus is determined

by the parity πi (πf ), the spin Ji (Jf ), the isotopic spin Ti (Tf ) and also by their projections Mi, MTi

(Mf , MTf ).

Using multipole decomposition [1, 9, 10] in a cyclical basis, and with respect to the spin orientation of
the final nuclei, we can put the components of the hadronic current into the following forms:

J0 =
∑

J≥0,M ′
f

(−i)J (4π(2J + 1))1/2
〈
JfM ′

f

∣∣ M̂J0 |JiMi〉D
Jf ∗
Mf M ′

f
(θ∗, ϕ∗),

J3 =
∑

J≥0,M ′
f

(−i)J (4π(2J + 1))1/2
〈
JfM ′

f

∣∣ L̂J0 |JiMi〉D
Jf ∗
Mf M ′

f
(θ∗, ϕ∗), (4)

Jλ = −
∑

J≥1,M ′
f

(−i)J (2π(2J + 1))1/2
〈
JfM ′

f

∣∣ λĴM
J;−λ + ĴE

J;−λ |JiMi〉D
Jf∗
MfM ′

f
(θ∗, ϕ∗), λ = ±1.

Here, D
Jf∗
MfM ′

f
(θ∗, ϕ∗) is the Wigner D-matrix [11] and |Ji − Jf | ≤ J ≤ Ji + Jf , M̂J0 , L̂J0 , ĴM

J;−λ and ĴE
J;−λ

are the coulomb, longitudinal, magnetic and electric multipole operators [1, 9]; θ∗ and ϕ∗ are the angles used

in determining the spin orientation of final nuclei [9].

The differential cross section of the process described in equation (2) is given by the following, by taking
into account final nuclei spin orientation:

dσ

dΩ�
=

2Jf + 1
2Ji + 1

E�P�G
2
F

2π

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∑
L ≥ 0
even

f
(f)
L PL(cos θ∗)

(
v1W

L
1 + v2W

L
2 + v3W

L
3 + v4W

L
4 + v5W

L
5

)
+

∑
L ≥ 1
odd

f
(f)
L

[
PL(cos θ∗)

(
v1W̄

L
1 + v2W̄

L
2 + v3W̄

L
3 + v4W̄

L
4 + v5W̄

L
5

)
+ P 1

L(cos θ∗) cos ϕ ∗
(
v6W̄

L
6 +

v7W̄
L
7 + v8W̄

L
8 + v9W̄

L
9 ) ] +

∑
L ≥ 2
even

f
(f)
L

[
P 1

L(cos θ∗) cosϕ ∗ (v6W
L
6 + v7W

L
7 + v8W

L
8 + v9W

L
9 )+

P 2
L(cos θ∗) cos 2ϕ ∗ v10W

L
10

]
+

∑
L ≥ 3
odd

f
(f)
L P 2

L (cos θ∗) cos 2ϕ∗v10W̄
L
10

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(5)
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Here, 0 ≤ L ≤ 2Jf and P m
L (cos θ∗) are Lagrange functions;

f
(f)
L =

∑
Mf

(−1)Jf −Mf [L]

(
Jf Jf L

Mf −Mf 0

)
P (Mf)

is a Fano tensor [9], where [x] =
√

2x + 1 and P (Mf ) is the population of magnetic substates; vi(i =

1, 2, · · · , 10) are leptonic functions and WL
k , W̄L

k (k = 1, 2, · · · , 10) are hadronic functions.

Leptonic functions are defined by:

v1 = 1
2(�1�∗1 + �2�

∗
2) v2 = − i

2 (�1�∗2 − �2�
∗
1)

v3 = �3�
∗
3 v4 = −2Re (�3�∗0) ,

v5 = �0�
∗
0 v6 = 2Re (�1�∗3)

v7 = −2Im (�2�∗3) v8 = −2Re (�1�∗0)

v9 = 2Im (�2�∗0) v10 = −1
2 (�1�∗1 − �2�

∗
2),

(6)

where �i(i = 0, 1, 2, 3) are the components of leptonic currents.

Hadronic functions are given by:

WL
1 = −

∑
J′J

A
(L)
−1;1

{
P +

J′+J

(
FEJFEJ′ + FMJFMJ′ + F 5

EJF 5
EJ′ + F 5

MJF 5
MJ′

)
−

−P−
J′+J

(
FMJFEJ′ + FEJFMJ′ + F 5

EJF 5
MJ′ + F 5

MJF 5
EJ′

)}
,

WL
2 = −

∑
J′J

A
(L)
−1;1

{
P +

J′+J

(
F 5

MJFEJ′ + FEJF 5
MJ′ + FMJF 5

EJ′ + F 5
EJFMJ′

)
−

−P−
J′+J

(
F 5

EJFEJ′ + F 5
MJFMJ′ + FMJF 5

MJ′ + FEJF 5
EJ′

)}
,

WL
3 =

∑
J′J

A
(L)
0,0 P +

J′+J

(
FLJFLJ′ + F 5

LJF 5
LJ′

)
,

WL
4 =

∑
J′J

A
(L)
0,0 P +

J′+J

(
FLJFCJ′ + F 5

LJF 5
CJ′

)
,

WL
5 =

∑
J′J

A
(L)
0,0 P +

J′+J

(
FCJFCJ′ + F 5

CJF 5
CJ′

)
,

WL
6 =

∑
J′J

A
(L)
1;0 P +

J′+J

(
FEJFLJ′ + F 5

EJF 5
LJ′ + FMJF 5

LJ′ + F 5
MJFLJ′

)
,

WL
7 =

∑
J′J

A
(L)
1;0 P−

J′+J

(
FEJF 5

LJ′ + F 5
EJFLJ′ + F 5

MJF 5
LJ′ + FMJFLJ′

)
,

WL
8 =

∑
J′J

A
(L)
1;0 P +

J′+J

(
FEJFCJ′ + F 5

EJF 5
CJ′ + FMJF 5

CJ′ + F 5
MJFCJ′

)
, (7)
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WL
9 =

∑
J′J

A
(L)
1;0 P−

J′+J

(
FEJF 5

CJ′ + F 5
EJFCJ′ + F 5

MJF 5
CJ′ + FMJFCJ′

)
,

WL
10 = −

∑
J′J

A
(L)
1;1

{
P +

J′+J

(
FEJFEJ′ − FMJFMJ′ + F 5

EJF 5
EJ′ − F 5

MJF 5
MJ′

)
+

+P−
J′+J

(
FMJFEJ′ − F 5

EJFMJ′ + F 5
MJF 5

EJ′ − FEJFMJ′
)}

,

W̄L
3 =

∑
J′J

A
(L)
0;0 P−

J′+J

(
FLJF 5

LJ′ + F 5
LJFLJ′

)
,

W̄L
4 =

∑
J′J

A
(L)
0;0 P−

J′+J

(
FLJF 5

CJ′ + F 5
LJFCJ′

)
,

W̄L
5 =

∑
J′J

A
(L)
0;0 P−

J′+J

(
FCJF 5

CJ′ + F 5
CJFCJ′

)
,

W̄L
10 = −

∑
J′J

A
(L)
1;1

{
P +

J′+J

(
F 5

MJFEJ′ + FMJF 5
EJ′ − F 5

EJFMJ′ − FEJF 5
MJ′

)
+

+P−
J′+J

(
F 5

EJFEJ′ + FEJF 5
EJ′ − FMJF 5

MJ′ − F 5
MJFMJ′

)}
,

W̄L
1 = −WL

2 , W̄L
2 = −WL

1 , W̄L
6 = WL

7 , W̄L
7 = WL

6 ,

W̄L
8 = WL

9 , W̄L
9 = WL

8

Here, FCJ , FLJ , FMJ and FEJ (F 5
CJ , F 5

LJ , F 5
MJ and F 5

EJ) are matrix elements of the vector (axial-vector),
coulomb, longitudinal, magnetic and electric multipole operators.

The coefficients A
(L)
m′m and P±

J′+J are defined by:

A
(L)
mm′ = (−1)Ji+Jf [J ] [J ′] [L]

(
(L − |M |)!
(L + |M |)!

)1/2
(

J J ′ L

m m′ M

) {
J J ′ L

Jf Jf Ji

}
,

P +
J′+J =

1
2
(−1)

1
2 (J′−J)

(
1 + (−1)

1
2 (J′+J)

)
, P−

J′+J =
1
2
(−1)

1
2 (J′−J+1)

(
1 − (−1)

1
2 (J′+J)

)
.

The cross section of the process of neutrino (anti-neutrino) scattering by nuclei (2), taking into account initial

nuclei spin orientation, is obtained using formulas (5), (6) and (7) in which WL
k and f

(f)
L are replaced by WL

k(i)

and f
(i)
L defined as

WL
k(i) =

2Ji + 1
2Jf + 1

(−1)J′+J+LWL
k ,

f
(i)
L =

∑
Mf

(−1)Ji−Mi [L]

(
Ji Ji L

Mi −Mi 0

)
P (Mi).

After summing over the spin states of electron (positron) and, in the case of zero mass neutrino, the leptonic
functions are expressed as

v1 = 1 − β�C3, v2 = η(C1 − β�C2), v3 = 1 + 2β�C3 − cos θ, v4 = −2(C1 + β�C2),
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v5 = 1 + β� cos θ v6 = 2(E2
ν − β2

� E2
� )

sin θ

q2
, v7 = 2ηβ�(E� − Eν)

sin θ

q
(8)

v8 = −2β�(E� + Eν)
sin θ

q
, v9 = 2ηβ� sin θ, v10 =

β�E�Eν sin2 θ

q2
.

Here, E� and Eν are electron (positron) and neutrino (anti-neutrino) energies; θ is angle between electron

(positron) and neutrino (anti-neutrino) momenta; β� is electron (positron) velocity; q = |�q| is momentum
transferred to nuclei ; η is +1 for neutrino scattering,–1 for anti-neutrino scattering; and C1 , C2 and C3 are
coefficients given by the relations

C1 = (β�E� cos θ − Eν)/q, C2 = (β�E� − Eν cos θ)/q, C3 = C1C2.

3. The differential scattering quasi-elastic cross section of 12C

Consider the process

ν(ν̄) +12 C →12 N(12B) + e−(e+), (9)

for which Ji = 0 → Jf = 1. The quanta numbers L, J and J ′ are defined then by

0 ≤ L ≤ 2Jf ⇒ 0 ≤ L ≤ 2, |Ji − Jf | ≤ J ≤ Ji + Jf ⇒ J = 1, |Ji − Jf | ≤ J ′ ≤ Ji + Jf ⇒ J ′ = 1.

The differential cross section of the process described in equation (9), obtained from (5), is given by

dσ
dΩ�

= E2
� G2

F

2π

{
R0

0 + A
(
P2(cos θ∗)R0

2 + P 1
2 (cos θ∗) cos ϕ ∗ R1

2

+P 2
2 (cos θ∗) cos 2ϕ ∗ R2

2

)
+ P

(
P1(cos θ∗)R0

1 + P 1
1 (cos θ∗) cos ϕ ∗ R1

1

)} (10)

A and P are alignment and polarization coefficients of the final nuclei [12]. Functions Rn
m are given by the

relations
R0

0 = v1H1 + v2H2 + v3H3 + v4H4 + v5H5,

R0
2 =

1
2

[v1H1 + v2H2 − 2(v3H3 + v4H4 + v5H5)]

R1
2 =

1
2
√

6
(v6H6 + v8H8), R2

2 =
1
4
v10H10, (11)

R0
1 = −3

2
(v1H2 + v2H1), R1

1 = − 3
2
√

6
(v7H6 + v9H8),

where
H1 = (FM1)2 + (F 5

E1)
2, H2 = 2FM1F

5
E1, H3 = (F 5

L1)
2,

H4 = F 5
L1F

5
C1, H5 = (F 5

C1)
2, H6 = F 5

L1(F
5
E1 + FM1),

H8 = F 5
C1(F

5
E1 + FM1), H10 = (F 5

E1)
2 − (FM1)2.
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The matrix elements of the vector magnetic, axial-vector electric, coulomb and longitudinal multipole operators
computed in the shell model are

FM1 =
ψ

3
√

π

q

2M
(F1 − (F1 + 2MF2)(2 − y))e−y ,

F 5
E1 = − ψ

3
√

π
FA(2 − y)e−y ,

F 5
C1 = −

√
2ψ

3
√

π

q

2M

[
3
2
FA + (W0FP + 2ηMFT )(1 − y)

]
e−y, (12)

F 5
L1 = −

√
2ψ

3
√

π
(FA − q2

2M
FP )(1 − y)e−y ,

where y = (bq/2)2 , b = 1.77 fm is the oscillator parameter, and ψ = −0.003 [1].

4. Spin asymmetry coefficient

Consider the spin asymmetry coefficients defined as

Aν(Eν, θ) =
dσ

(
�SN ↑↑ �Pν

)
− dσ

(
�SN ↑↓ �Pν

)
dσ

(
�SN ↑↑ �Pν

)
+ dσ

(
�SN ↑↓ �Pν

) , (13)

where �SN is the final nuclei spin and �Pν is the neutrino momentum. Analysis of angular dependence of spin
asymmetry shows, for given values of P and A , that the maximum FT contribution calculated due to ΔAν is
moving opposite of increasing neutrino energy (see Figures 1(a, b)). This maximum also depends on the angle

θ for given values of P and A (see Table).
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Figure 1. Contribution of SCC to the asymmetry coefficient for different value of the neutrino energy as a function of

angle.
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Table. Contribution of SCC to spin asymmetry coefficients, with ΔAν = Aν(FT = 5 · 10−3MeV ) − Aν(FT = 0).

P = 0.7, A = 0.3 P = 1, A = 1
Eν(MeV) 200 200 400 400 500 500 600 600
θ(degree) 47 163 54 80 41.5 66 34 62

ΔAν 0.07 0.53 0.27 0.54 0.26 0.73 0.21 0.72

In Figure 2 we show the energy dependence of the contribution D to the SCC, defined as

D =
Av(FT = 0) − Av(FT = 5 · 10−3MeV −1)

Av(FT = 0)
, (14)

relative the asymmetry coefficient for θ = 60◦ . It seems that the SCC relative contribution is less than 16%
for neutrino energy below 300 MeV. This relative contribution can take value in the range of 75% to 92% when
neutrino energy is more than 400 MeV.

�� ��� ��� ��� ���
��	�

�

�	�

�	�

�	�

�	�





	�

��������������������

�

��
�������

���	������	�
���	������	


Figure 2. Relative contribution of SCC to the asymmetry coefficient for θ = 60◦ .

5. Electron-neutrino correlation and charge asymmetry coefficients

The eν correlation coefficient is defined by the formula

Aeν =
dσ(θ ≈ 0) − dσ(θ ≈ π)
dσ(θ ≈ 0) + dσ(θ ≈ π)

. (15)

When the final nucleus is oriented in the direction of neutrino and in the ultra relativistic case (β� = 1), the
coefficient Aeν takes the form

Aeν =
D1 − D2

D1 + D2
, (16)

with
D1 = 2(1 − A)(1 − y1)2 ((Eν − E�)FT + FA)2 exp(−2y1),
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D2 = (1 + 1
2A + 3

2ηP )(2 − y2)2 ((Eν + E�)F2 − ηFA)2 exp(−2y2),

y1,2 = (b(Eν ∓ E�)/2)2 .

In the maximum polarization case (A = P = 1), D1 = 0, Aeν = −1 and eν correlation do not depend on SCC
form factor FT . However, in the case of partial polarization of the final nucleus, the relative contribution of
SCC depends on the value of the alignment coefficient A . For example, when A= 0.1 and P = 0.5 (Figure 3),

this value reaches between 1% to 17% in the 80–120 MeV neutrino energy range . When energies Eν are above
200 MeV the coefficient Aeν

∼= +1 and it is no more sensitive to SCC form factor FT variation.
The charge asymmetry coefficient is defined by the formula

B =
dσν − dσν̃

dσν + dσν̃
, (17)

where dσν (dσν̃) is the differential cross section for neutrino (anti-neutrino) scattering.

B is determined with respect to the parameter η , which is equal to +1 for neutrino scattering and -1 for
anti-neutrino scattering.

The curves (see Figure 4) for which the neutrino energy is in the range of 350 to 423 MeV show that

the charge asymmetry coefficient is negative and takes values between –2.6% to –2.5% when FT = 0. But it

becomes positive with value between 30% and 60% when FT = 5 × 10−3 MeV−1 . So, in this neutrino energy
area, the coefficient B presents only pure SCC effects.
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Figure 3. Relative contribution of SCC to the

eν correlation coefficient.

Figure 4. Charge asymmetry coefficient for P = 0.7,

A = 0.3 and θ = 60◦ as a function of energy.

6. Conclusion

Theoretical analysis of different characteristics possessed by processes of quasi-elastic neutrino scattering
by nuclei has shown that the relative contribution of SCC to spin asymmetry, eν correlation and charge
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asymmetry coefficients for FT = 5 × 10−3 MeV−1 , can reach some tens of percents for particular values of
alignment A and polarization P of final (initial) nucleus and that of neutrino (antineutrino) energy.

Therefore, the experimental study of quasi-elastic neutrino (antineutrino) scattering processes can allow
more accurate expression of the SCC tensor form factor when the nucleus polarization is taken into account.
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