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Abstract

I give certain analytical properties of quantum kicked rotators, both theoretic and observed from com-

putation. I give an expression for the wave function between two successive impulses. An element of the

transition matrix, the matrix that takes the wave function from one impulse to another, exponentially falls

away from the main diagonal. The decay parameter is given for a few special cases of a periodic potential.

Finally, the transition matrix is used to derive the time evolution of the energy for periodic cases and for

fundamental resonances. The empirical expressions of Dorizzi et al. are compatible with our analytical

results.
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1. Introduction

I study quantum systems for Hamiltonians whose classical counterparts are chaotic. Consider the
Hamiltonian

H =
p2

2
+ κTV (θ)

∑
n

δ(t − nT ), (1)

where θ and p are the angle and angular momentum variables. This is the Hamiltonian of a rotator on which
an impulse of potential V (θ) and of strength κT is applied at equal time intervals T . For V (θ) = cos θ the
Hamiltonian describes the so-called standard map of chaos. The system, treated as classical, is chaotic for
κT > 0.971635, [1–6].

Different aspects of Hamiltonian (1) have been studied both classically and quantum mechanically by

many authors theoretically [1–20] and experimentally [21–22]. This system is applicable in the very different

branches of physics, e.g., laser [21], statistical physics [23, 24], and solid state physics [25].
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Casati et al. [7] have considered the quantum mechanical counterpart of the standard map analytically
and computationally and have compared their results with classical ones. There are important differences. They
have observed that in fundamental resonances (T = 4πm , m is an integer) the energy of the rotator grows

quadratically with time. Izrailev and Shepelyansky [8] have extended the work of Casati et al. for resonances

in general (that is, when T is a rational multiple of 4π) and observed a similar behavior of energy with time.

Dorizzi et al. [9] have studied the potential

V (θ) =
2
k

tg−1

(
k

2
cos θ

)
, k = κT. (2)

Their numerical results indicate quadratic growth of energy with time in resonances.

In Section 2, I consider the potential of equation (2), quantize the kicked rotator, and calculate the
unitary evolution matrix U , which takes the wave function from one impulse to another. In Section 3, I give
some important properties of the evolution operator. In Section 4, I study the time evolution of the energy and
obtain an analytical expression for fundamental resonances and periodic cases. Finally, I conclude my discussion
and numerical results in Section 5.

2. Evolution operator

The wave functions at times t0 and t are related through the following integral form of Schrödinger’s
equation:

ψ(t) = e
−i

� t
t0

H(t′)dt′
ψ(t0), (3)

where Plank’s constant is taken to be 1. For t0 = nT+ and t = (n + 1)T− , where “−” and ”+” signs indicate

the times immediately before and after the impulses, respectively. Equations (1) and (3) gives

ψ((n + 1)T−) = e−iTH0ψ(nT+), (4a)

where H0 = p2/2. Similarly for t0 and t equal to (n + 1)T− and (n + 1)T+ , respectively one gets

ψ((n + 1)T+) = e−ikV (θ)ψ((n + 1)T−). (4b)

Combining equations (4), the wave function after the (n + 1)st impulse, in terms of that after the nth , one
obtains

ψ((n + 1)T+) = U(k, θ, T )ψ(nT+), (5a)

where

U(k, θ, T ) = e−ikV (θ)e−iH0T . (5b)

I expand this wave function in terms of the eigenfunctions of free particle, φn = (1/
√

2π)einθ . Thus

ψ(θ, t) =
∑

j

Cj(t)φj(θ). (6)
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Inserting equation (6) in equations (5), multiplying both sides by φ∗
m and integrating over the interval (0, 2π),

gives
Cm((n + 1)T ) = UmjCj(nT ) = Am�Ω�jCj(nT ), (7)

where Umj , Am� and Ω�j are the matrix elements of U(k, θ, T ), exp [−ikV (θ)] and exp(−iH0T ), respectively.
Thus

Umj =< φm

∣∣∣e−ikV (θ)e−iH0T
∣∣∣ φj >, (8a)

Am� =< φm

∣∣∣e−ikV (θ)
∣∣∣φ� >, (8b)

Ω�j =< φ�

∣∣e−iH0T
∣∣φj >= e−iωjT δ�j , (8c)

where ωj = 1
2 j2 . Calculation of Am� for the potential of Equation (2) is elaborate. However, one obtains the

following exact expression

Am� =
2
β

Z|m−�| − δm�, (9a)

where

Z = 2i(1 − β)/k and β = (1 + k2/4)
1
2 . (9b)

Inserting Equations (9), and (8c) in Equation (8a) gives

Umj =
(

2
β

Z|m−j| − δmj

)
e−ij2T/2. (10)

Variation of absolute of U with respect to matrix elements Un m and parameter k can be observed in Figure 1.
This figure shows that the matrix elements Un m decay exponentially by increasing the difference of elements
n = |m− j| ; but by varying the parameter k from 0 to 15, first it decreases and goes to zero, then increases.
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Figure 1. Variation of absolute of U with respect to matrix elements Un m and parameter k.

Here after I shall use a matrix notation rather than the component notation. Let C(0) andC(n) be the

initial wave vector and that after the nth impulse. Repeated application of Equation (7) gives

C(n) = UnC(0) = (AΩ)nC(0). (11)
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3. Some properties of the evolution operator

From Equations (10) and (11) one may read the following properties of U and C(n).

3.1. Unitary property

U is unitary. Hence if C(0) is normalized, then C(n)′s remain normalized for all n , C+(n)C(n) = 1. I
have used this as a criterion for checking the precision of our numerical computations.

3.2. Eigenvalues of U

The eigenvalues of U are of the form exp(iαn). If all αns are rational multiples of 2π then there is
the possibility of complete periodicity for the system. That is, the system may return to its initial value after
certain number of impulses. This is a quantum phenomenon with no classical counterparts. I shall examine an
example of period two in Section IV.

3.3. Periodicity of the elements of U

The elements of U are periodic in T . There follows that systems with impulse intervals Tn = T + 4πn ,
n is integer, behave the same. On the other hand, k = κT is a measure of the strength of the impulse. By the
same argument, only k′ = [κT − mod(4πn)] will enter equations (8)–(11) chaotic and/or no chaotic regimes
will recur ask increases indefinitely. This is in contrast to the classical case where there is a threshold to the
strength of potential beyond which chaos sets in and persists thereafter. Of course this remark does not apply
to the fixed points of classical chaotic systems.

4. Evolution of the energy of quantum systems

The expectation value of the energy at t = nT+ is

E(n) =
∫ 2π

0

ψ∗(θ, n)
p2

2
ψ(θ, n)dθ =

1
2

∞∑
j=−∞

j2 |Cj(n)|2 = C+(n)HC(n), (12)

where the elements of H areHκj = (1/2)j2δkj . The classical counterpart of Equation (12) has chaotic behavior

for k > kc where kc is some critical value depending on the impulse potential. But in a quantum system three
different cases can be recognized.

4.1. The periodic case

For T/4π = 1/2 the matrix elements of Ω are ±1, and Equation (10) reduces to

Umj =
[

2
β
|Z||m−j| − δmj

]
i|m−j|(−1)j . (13)

From this it can be observed that Umj = U∗
jm or U = U+ = U−1 , or U2 = 1. Thus, the system returns to its

initial state after every two impulses, and for all values of k there are only two states in which the system may
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assume, C(0) and UC(0). Correspondingly, the energy also alternates between two values. For example, for

Cj(0) = δoj , j = 0,±1, ... one finds

E2n = 0, E2n+1 =
(1/4)k2

1 + (1/4)k2
. (14)

This analytical feature has been checked numerically by using Equation (12), as it is shown in Figures 2a and

2b for T/4π = 1/2, with the number of kicks n = 50 and k = 0.5, k = 2, respectively.
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Figure 2a. Evolution of the energy with respect to kick number, for k = 0.5, T/4π = 1/2and n = 50.
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Figure 2b. The same as figure 2a, but for k = 2.

4.2. Resonances

The cases T/4π = p/q �= 1/2, p and q are integers, are known as resonances. The special cases of

T/4π = m, m is an integer, are the fundamental resonances. It has been verified numerically by me and others

[5] that, in all resonances, the energy grows quadratically with time. Here, I prove this feature for fundamental
resonances analytically.
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For T/4π = m, Ω, the matrix representation of exp(−iH0T ) becomes a unit matrix, see equation (8c).

Correspondingly, the evolution operator of equation (5b) reduces to exp [−ikV (θ)] . For the wave function after

the nth impulse one finds

ψ(θ, n) = e−inkV (θ)ψ(θ, 0). (15)

The expectation value of the energy is

E(n) =
∫

ψ∗(θ, n)(
1
2
p2)ψ(θ, n)dθ =

∫ ∣∣∣∣∂ψ(θ, n)
∂θ

∣∣∣∣
2

dθ

= η(k)n2 + ξ(k)n + E(0), (16)

where

η(k) =
1
2
k2

∫ ∣∣∣∣∂V

∂θ
ψ(θ, 0)

∣∣∣∣
2

dθ, (17a)

ξ(k) = −1
2
ik

∫
∂V

∂θ

[
ψ∗(θ, 0)

∂ψ(θ, 0)
∂θ

− ∂ψ∗(θ, 0)
∂θ

ψ(θ, 0)
]

dθ, (17b)

E(0) =
1
2

∫ ∣∣∣∣∂ψ(θ, 0)
∂θ

∣∣∣∣
2

dθ. (17c)

Equations (15)–(17) hold for any potential. For the potential of Equation (2) one has

η(k) =
1
2
k2

∫ 2π

0

sin2 θ

(1 + k2

4 cos2 θ)2
|ψ(θ, 0)|2 dθ, (18a)

ξ(k) = −1
2
k

∫ 2π

0

sin θ

1 + k2

4 cos2 θ

[
ψ∗(θ, 0)

∂ψ(θ, 0)
∂θ

− ψ(θ, 0)
∂ψ∗(θ, 0)

∂θ

]
dθ. (18b)

If the initial wave functions is the ground state, ψ(θ, 0) = 1/
√

2π , then E(0) and ξ(k) vanish. The integral

(18a) can be evaluated by the change of variable k/(2 cos θ) = tanu . Equation (16) then becomes

E(n) =
k2/4√

1 + k2/4
n2 (19)

≈
{

1
4k2n2, where k << 1,
1
2kn2, where k >> 1.

I have verified equations (12) for initial conditions T/4π = p/q �= 1/2. All of them confirm equation (19) for a

wide range of parameter k and a variety of initial wave functions. For example, for k = 0.5 and T/4π = 1, the
variation of energy in terms of kick number is shown in Figure 3.

The limiting values of analytical computation of Equation (19), for small and large k ’s, were predicted

numerically by Dorizzi et al. [9].
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Figure 3. The variation of energy as a function of kick number for k = 0.5 and T/4π = 1.

4.3. Non resonant and non-periodic cases

Non resonant and non-periodic cases occur for T/4π = irrational. An analytical study of the system is
complicated. For small k ’s, however, I have verified numerically the recurrence phenomenon reported by Hogg
and Huberman [14]. With recurrence, one means the return of the expectation value of a dynamical quantity

(in this case, the energy) into the close neighborhood of its initial value. In a numerical study the larger the k

the larger the dimension of the U matrix. The numerical precision is rapidly lost. It becomes difficult to decide
whether the system becomes chaotic or not.

4.4. Conclusion and numerical results

For the potential of equation (2) I have derived analytically the wave function of the system after each

impulse, equations (6) and (11). In Section III, I have shown some properties of the evolution operator U : (1)

U is unitary; (2) the eigenvalues of U are of the form exp(iα). If all α′s are rational multiples of 2π then the

system is periodic. (3) The elements of U are periodic in T . This is in contrast to the classical case.

The time evolution of the energy of the quantum kicked rotator with potential (2) is obtained for various

cases. For T/4π = 1/2, U2 = 1. The system returns to its initial state after every two impulses. For

T/4π = p/q �= 1/2, the energy grows quadratically in time, as expressed in equation (16). The coefficients

of the quadratic expression for T/4π =integer, is explicitly given; see equation (19). For T/4π =irrational, the

behavior of the system depends on the strength of the impulses, k . For small k (≤ 10), numerical computations
show an upper bound for the energy.

In numerical calculations, wave vectors of 1000 components and matrices of 1000×1000 were considered
in double precision. Due to power decay of elements of U away from the main diagonal, terms of absolute values

lest than 10−30 were dropped. The initial wave function was taken to be the ground state ψ(θ, 0) = 1/
√

2π .
The unitarity of the truncated matrix U was used to check the accuracy of the numerical results in various
stages of the computations.
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