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Abstract

We present first-principles calculations of the structural, electronic and optical properties of zinc-blende

SixGe1−xC alloys by application of the full potential linearized augmented plane wave (FP-LAPW) method.

In this approach, the generalized gradient approximation was used for the exchange-correlation energy which

is based on the optimization of total energy and corresponding potential. The effect of composition on lattice

constants, bulk modulus, band gap, real part of the dielectric function ε (0) and refractive index n(0) was

investigated. These parameters were found to depend nonlinearly on alloy composition x , except the bulk

modulus and the lattice parameter, which follows Vegard’s law. Using the approach of Zunger et al, the

microscopic origin of the gap bowing is also elucidated. It is concluded that the energy band gap bowing

is primarily due to chemical charge-transfer effect. Contribution of volume deformation and structural

relaxation to the gap bowing parameter is found to be very small.

Key Words: Alloys, Lattice parameter, Bulk modulus, Electronic structure, Band-gap, Gap bowing,

Optical properties.

1. Introduction

Theoretical studies have been fundamental in the development of new materials and new devices for
diverse industrial applications. In the last few years, the electronic properties of some SiC polytypes have
been calculated [1–4]. Further studies went deep into the elastic [5] and the optical properties [6], and the

high-pressure behaviour [7, 8]. Furthermore, molecular dynamics simulations have been carried out to study

the thermomechanical properties of SiC [9]. However, there is a group of ternary compounds (SiGeC) that has
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demonstrated much potential for use in column IV Heterojunction Bipolar Transistors (HBT’s) [10, 11] and

high hole mobility MOSFETs [12, 13]. Like its more common counterpart, silicon germanium (SiGe), SiGeC is a
narrow bandgap semiconductor that is compatible with most silicon-based processing. Its bandgap is adjustable,
approximately according to Vegard’s law and depending mainly on germanium content [14]. What distinguishes
SiGeC from SiGe is the potential strain compensating effect of substitutional carbon. Another possible IV-IV
compound is GeC. Also, experimental works have been devoted to this compound [15–17]. Moreover, there have

been relatively few theoretical studies of the electronic and structural properties of this material [16] compared
with SiC and SiGe. The existence of this material in its zinc-blende form has been reported. First ab initio
investigation [18] shows that GeC, like SiC, is a wide-gap semiconductor with an indirect band gap.

In order to help understand and control the material and behavior of bowing and related properties, we
have investigated the effect of the Si concentration on the structural, electronic and optical properties of the
SixGe1−xC alloys in zinc-blende structures with Si contents between 0 and 1 using the full potential-linearized
augmented plane wave (FP-LAPW) method. Various quantities, including lattice parameters, bulk modulus
and its pressure derivative, band gap and optical bowing, were obtained for this alloy. The article is organized
as follows: in the first section we give a description of the ab initio theoretical method. In Section two, results
and discussion for structural, electronic properties and optical properties are presented. In the final section, we
present our conclusions.

2. Calculation method

First-principles calculations are performed by employing a full-potential linear augmented plane wave
(FP-LAPW) approach [19, 20] based on density functional theory (DFT) [21] and implemented in Wien2k

[22] code. The exchange-correlation contribution is described within generalized gradient approximation based

on Perdew et al. (GGA96) [23]. The energy of separation between the valence and core states is -6.0 Ryd.
The valence wave functions inside the muffin-tin spheres are expanded in terms of spherical harmonics up to
lmax = 10, and in terms of plane waves with a wave vector cutoff Kmax in the interstitial region. We set the
parameter Rmt · Kmax = 7 for SiC and GeC and ternary alloy, where Rmt is the smallest muffin-tin radius,
and Kmax is a cutoff wave vector. The binary compounds crystallize in the zinc-blende structure SiC, GeC
(F 4̄3m), the disordered ternary alloy is modelled using a supercell with 8 atoms in the (P) structure. The
iteration process was repeated until the calculated total energy of the crystal converge to less than 1 mRyd.
Total of 7 iterations was necessary to achieve self-consistency.

As such, muffin-tin radii of 1.8, 2.0 and 1.6 Bohr have been chosen for values for SiC, GeC, Si, Ge and
C, respectively. For ternary compounds we have used muffin-tin radius of 1.45 Bohr for C, 1.65 Bohr for Si and
1.85 Bohr for Ge atoms.

The k -integration over the Brillouin zone is performed using the Monkhorst and Pack mesh [24]. A mesh
of 37 special k-points for binary compounds and 17 special k-points for the alloy were taken in the irreducible
wedge of the Brillouin zone.

Optical properties of a solid are usually described in terms of the complex dielectric function ε (ω) =

ε1 (ω) + iε2 (ω) . The imaginary part of the dielectric function in the long wavelength limit has been obtained

directly from the electronic structure calculation, using the joint density of states (DOS) and the optical matrix
elements. The real part of the dielectric function can be derived from the imaginary part by the Kramers–
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Kronig relationship. The knowledge of both the real and the imaginary parts of the dielectric function allows
the calculation of important optical functions. The refractive index n (ω) is given by

n (ω) =

[
ε1 (ω)

2
+

√
ε2
1 (ω) + ε2

2 (ω)
2

]1/2

. (1)

At low frequency (ω = 0), we get the relation

n (0) = ε1/2 (0) . (2)

In this paper, we also present and analyze the dielectric constant static ε (0) of the dielectric functionε (ω)and

the index of refraction |ε1 (0)|1/2 at the frequency ω = 0.

3. Results and discussion

3.1. Structural properties

Concerning the structural properties of this alloy, we determined its equilibrium parameters namely the
lattice parameter, the module of compressibility and its derivative. In our calculations, we used approximation
GGA for the determination of the potential of exchange and correlation. The other parameters used in
calculations, namely the muffin-tin radius, Rmt · Kmax and lmax are presented in section 2. Integration over k

in the zone of Brillouin was carried out by using the Monkhorst-pack scheme [24], 17 special points were used.
The alloy was studied by using a primitive mesh of 8 atoms. We compute lattice constants, bulk modulus and
their first derivatives by fitting the total energy versus volume according to the Murnaghan equation of state
[25].

The values obtained for various concentrations of silicon are gathered in Table 1, we compare the
calculated data with experiment and with results obtained from previous calculations. It is clear that our
GGA results are in reasonable agreement with experimental values and other calculated values.

Furthermore, the calculated values of the bulks modulus, using the GGA approximation, decrease from
SiC to GeC; from the lower to the higher atomic number. This suggests that GeC is more compressible than
SiC. Variations of total energy as a function of the volume for these concentrations are shown on Figure 1.

The variation of the lattice parameter and bulk modulus as a function of the concentration, of alloy
SixGe1−xC is illustrated on Figure 2 and Figure 3, respectively.

We note that the lattice parameter decreases linearly as a function of the concentration. Our calculations
agree well with those calculated by Végard’s law [26]:

a (AB1−xCx) = (1 − x)a(AB) + xa(AC), (3)

where a(AB) and a(AC) are the lattice parameters of binary compounds AB and AC; however, one may note
a light deviation compared to the Vegard’s law, due to the relaxation of the Si-C and Ge-C bond lengths to
their equilibrium total energy minimizing value.

Hence, the lattice constant can be written as:

a (AB1−xCx) = (1 − x)a(AB) + xa(AC) − x(1 − x)b, (4)
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Table 1. The calculated lattice parameter a , bulk modulus B , and its pressure derivatives B′ for SixGe1−xC and its

binary compounds. Available experimental and theoretical data are also given for comparison.

a (Å) B (GPa) B’ a (Å) Végard
GeC(P)
Present work
Other calculations

4.605
4.61[28]
4.61[30]
4.54[27]
4.43[31]
4.62[33]

173.652
200[28]
181[30]
203[27]
188[31]
200[33]

4.458
4.16[28]
4.20[30]
3.73[27]
3.45[31]
4.15[33]

4.605

Si0.25Ge0.75C 4.550 181.649 4.250 4.548
Si0.5Ge0.5C 4.494 193.162 4.107 4.491
Si0.75Ge0.25C 4.435 203.887 4.150 4.434
SiC(P)
Present work
Other calculations
Expt

4.378
4.39[28]
4.40[30]
4.34[27]
4.32[9]
4.40[33]
4.36[32]

213.682
217[28]
206[30]
225[9]
227[29]
215[33]
225[32]

4.969
3.71[28]
5.30[30]
4.02[27]
4.11[9]
4.10[29]

4.378

where the quadratic term b is the bowing parameter.

We report the behavior of the bulk modulus as a function of Si-composition x for SixGe1−xC compounds.
Our results show a small deviation from the linear concentration dependence (LCD). With a quadratic fit, we
find a small downward bowing parameter of b = 3.21 GPa. The small bowing parameter is due to the bulk
modulus of GeC which is 18.73% smaller than SiC. We are satisfied to discuss only our results considering the
absence of experimental and theoretical studies on this alloy.

3.2. Electronic properties

In study of the electronic properties of this alloy, interest is precisely in the structure of energy bands. For
each concentration, the band structure was calculated using the lattice parameter obtained during structural
optimization. Energy bands structures for various concentrations of silicon are shown in Figure 4.

For alloy SixGe1−xC , calculations of the band structures for all concentrations of silicon gave a direct
gap at the Γ point.

Values of the direct and indirect gap, for various concentrations of silicon, are given in Table 2. The
variation of the direct and indirect gap of alloy SixGe1−xC as a function of concentration is shown in Figure
5. Polynomial fit of the curves shows a nonlinear behavior of the variation of the gaps:

EΓ→X = 3.371 + 0.986x− 0.329x2, (5)

EΓ→Γ = 1.646− 0.054x− 0.234x2. (6)
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Figure 1. Total energy as a function of the volume with GGA calculation for SixGe1−xC alloy.
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Figure 2. Lattice parameter as a function of composition

x for SixGe1−xC compounds.

Figure 3. Bulk modulus as a function of composition x

for SixGe1−xC compounds.

It is clear from the above equations that the direct Γ → Γ and indirect Γ → X band gaps, versus concentration,
exhibit a nonlinear behavior. The direct gap Γ → Γ exhibits a downward bowing with a value of -0.234, while
the indirect gap Γ → X has an upward bowing of -0.329 within the range of x investigated.

To analyze the physical origin of the gap bowing, we follow the approach of Zunger et al. [34]. In this
approach, gap bowing coefficient b is assumed to be independent of composition x and is decomposed into
three components. The overall bowing coefficient at x = 0.5, measures the change in band gap in the formal
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Figure 4. Band structure of the ternary alloy SixGe1−xC .

reaction:
SiC (aSiC) + GeC (aGeC) → Si0.5Ge0.5C (aeq) , (7)

where aSiC and aGeC are the equilibrium lattice constants of the constituent parents SiC and GeC, and aeq

is the equilibrium lattice constant for SixGe1−xC alloy with x = 0.5. Reaction (7) is decomposed into three
component reactions:

SiC (aSiC) + GeC (aGeC) V D−→ SiC (a) + GeC (a) , (8)

SiC (a) + GeC (a) CE−→ Si0.5Ge0.5C (a) , (9)
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Table 2. The calculated direct (Γ → Γ) and indirect (Γ → X ) band gaps for SixGe1−xC alloy.

EΓΓ (eV ) EΓX (eV )
GeC 1.650 3.366

Si0.25Ge0.75C 1.609 3.622
Si0.5Ge0.5C 1.572 3.738

Si0.75Ge0.25C 1.470 3.960
SiC 1.359 4.019
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Figure 5. Composition dependence of the direct (Γ → Γ) and indirect (Γ → X ) band gaps in SixGe1−xC alloy.

Si0.5Ge0.5C (a) SR−→ Si0.5Ge0.5C (aeq) . (10)

The first step measures the effect of volume deformation (VD) on the energy gap bowing. The corresponding
contribution to the bowing, bV D , is responsible for the variation of the band gap width in the individual
components, SiC and GeC, to hydrostatic pressure of the solid solution. The second step, due to charge-
exchange (CE) contribution bCE , the relaxation of the interatomic bond lengths in the superlattice was not
carried out. In this case, there occurs a charge redistribution between the Si-C and Ge-C bonds, which results
in changing the arrangement of the electron energy bands. The final step, the “structural relaxation” (SR),
measures changes in passing from the unrelaxed to the relaxed alloy by bSR . Consequently, the total gap bowing
parameter is defined in [34] as

b = bV D + bCE + bSR, (11)

bV D = 2 [εSiC (aSiC) − εSiC (a) + εGeC (aGeC) − εGeC (a)] , (12)

bCE = 2 [εSiC (a) + εGeC (a) − 2εSi0.5Ge0.5C (a)] , (13)

bSR = 4 [εSi0.5Ge0.5C (a) − εSi0.5Ge0.5C (aeq)] , (14)

where ε is the energy gap which has been calculated for the indicated atomic structures and lattice constants.
All terms in expressions (11)–(13) have been calculated separately via self-consistent band structure calculations

FP-LAPW. Three contributions to the direct gap bowing (Γ → Γ) have been calculated using GGA-PBE scheme

267



DJEDID, ABBAR, ABBES

and the results are given in Table 3. It is clear that the main contribution to total gap bowing of Si0.5Ge0.5C

alloy is due to the charge exchange effect represent bybCE .

Table 3. Decomposition of optical bowing, into contributions due to volume deformation (VD), charge exchange (CE)

and structural relaxation (SR), compared with that obtained by a quadratic interpolation (all values in eV).

Direct (Γ → Γ) Present work Present work quadratic equation
bV D −0.048
bCE −0.294
bSR +0.072
b −0.270 −0.234

For the study of the optical properties of this alloy, we were interested in the variation of the static
optical properties (real part of the dielectric functionε (0) and index of refraction n(0)) as a function of the

concentration. Values of the real part of the dielectric function ε (0) and the index of refraction n(0), for
various concentrations of silicon, are given in Table 4. Variations of the static optical properties as a function
of the concentration of silicon are illustrated in Figures 6 and 7.

Table 4. The calculated real part of the dielectric function ε (0) and index of refraction n(0) for SixGe1−xC alloy.

ε(0) n(0)
GeC 7.836 2.799

Si0.25Ge0.75C 7.538 2.745
Si0.5Ge0.5C 7.275 2.697

Si0.75Ge0.25C 7.070 2.659
SiC 6.907 2.628
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Figure 6. Variation of the index of refraction n(0) with

the concentration of silicon for SixGe1−xC alloy.

Figure 7. Variation of the real part of the dielectric func-

tion ε (0) with the concentration of silicon for SixGe1−xC

alloy.

These curves are given using a polynomial adjustment. This adjustment led us to the following expressions
of ε and n :
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ε = 7.837− 1.305x + 0.374x2 (15)

n = 2.799− −0.235x + 0.064x2. (16)

In light of these equations, we can note that there is no linearity of the dependence of the optical properties
of this alloy within concentration x .

4. Conclusion

We have studied the electronic, structural and optical properties of SixGe1−xC ternary alloy by first
principles FP-LAPW calculations. We have investigated the composition dependence of the lattice constant,
bulk modulus, band gap, the real part of the dielectric function ε (0) and refractive index n(0). These
parameters were found to depend nonlinearly on alloy composition x, except the bulk modulus and the lattice
parameter, which follows Vegard’s law. The calculated electronic properties of SixGe1−xC alloys for different
silicon compositions x, show that the fundamental gap is direct and is along the direction Γ → Γ. The band
gap exhibits non-linear behavior or bowing effect with the change of concentration. The main contribution to
the total bowing parameter comes from the charge transfer between anion and cation. We consider that the
results obtained are only one predictive study, by hoping that our current work will stimulate even more work
on these materials.
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[4] K. Karch, G. Wellenhofer, P. Pavone, U. Rößler and D. Strauch, 1994 Structural and Electronic Properties of SiC

Polytypes: Proc. 22nd Int. Conf. on the Physics of Semiconductors (Vancouver) ed. D T Lockwood (Singapore:

World Scientific).

[5] W. R. L. Lambrecht, B. Segall, M. Methfessel and Van M. Schilfgaarde, Phys. Rev., B 44, (1991), 3685.

[6] V. I. Gavrilenko, S. I Frolov and N. I Klyui, Physica., B 185, (1993), 394.

[7] K. J. Chang and M. L. Cohen Phys. Rev., B 35, (1987), 8196.

[8] B. H. Cheong, K. J. Chang and M. L. Cohen Phys. Rev., B 44, (1991), 1053.

[9] T. Meijie and S.Yip Phys. Rev., B 52, (1995), 15150.

[10] L. D. Lanzerotti, A. St. Amour, C. W. Liu, J. C. Sturm, J. K. Watanabe, N.D. Theodore, IEEE Electron Device

Letters, 17, (1997), 334.

[11] S. Banerjee, Proceedings of SPIE, 3212, (1997), 118.

269



DJEDID, ABBAR, ABBES

[12] A. C. Mocuta, D. W. Greve, IEEE Electron Device Letters, 21, (2000), 292.

[13] S. John, S. K. Ray, E. Quinones, S. K. Oswal, S. K. Banerjee, Applied Physics Letters, 74, (1999), 847.

[14] K. Brunner, W. Winter, K. Eberl, N. Y. Jin-Phillipp, F. Phillipp, Journal of Vacuum Science and Technology B,

16, (1998), 1701.

[15] R. A. Soref, J. Appl. Phys., 70, (1991), 2470.

[16] M. Krishnamurthy, J. S. Druker, A. Challa, J. Appl. Phys., 78, (1995), 7070.
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