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Abstract

Carbon induced heavy ion reactions on the heavy 197 Au target are considered. The statistical scission

model is used to calculate this fission process. In the present considered reactions, the process leads to

the fragmentation of only one deformed heavy fragment and few nucleons. Angular distributions of the

fission fragments are numerically calculated for different values of the incident energies in the range 64–

104 MeV. The present theoretical calculations of the differential cross-sections are in good agreements with

experimental data for the carbon incident energy 84 A MeV. The effective variance of this fission process is

also calculated. The present numerically calculated values of the variance and angular distributions are in

good agreement with previously calculated values.

Key Words: Fission reactions, charged particle induced fission, mulifragmentation, 12 C + 197 Au reactions,

calculated angular distributions and variances.
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1. Introduction

The statistical transition state model (TSM) [1] provides a good representation of the fragment angular
distributions from low energy nuclei fission with finite barriers and well defined transition state configurations.
The saddle point in the potential energy surface for nuclear shape degrees of freedom in this model represents
a distinct point in the fission trajectory where the direction of the fission axis with respect to the nuclear spin
I is determined. Also assumed in the TSM model is that the spin projection K on the nuclear symmetry
axis remains unchanged during the subsequent descent from the saddle to the scission point. The TSM model
is extended [2–8] to the domain of fusion-like heavy ion reactions by a small modification [9] to include the
dependence of the transition state shape on the quantum number K , which leads to a minor change in the
theoretical angular distributions for most reactions. The breakdown of the fundamental assumption of the
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TSM model for heavy nuclei requires a rather different approach to describe the fission of heavy systems. The
various directions of the fission axis of an axially symmetric nucleus according to this theory are assumed to
be populated due to the density of the intrinsic transitions states, depending on the moments of inertia of the
nucleus for collective rotations about its principle axes and also on the nuclear temperature. The moments of
inertia are related to the spin-dependent saddle point shapes which are axially symmetric for lighter systems,
and triaxial for heavy nuclei as predicted from the rotating liquid drop model [10] RLDM.

The transition state theory is inapplicable for nuclear spins in excess of the RLDM stability limit, since
an equilibrium point in the potential energy no longer exists. This inapplicability may occur also when the
nuclear temperature exceeds magnitudes equivalent to the height of the fission barrier [8].

The statistical scission model SSM has been suggested [11] for heavy ion reactions with small or negligible
fission barriers by assuming a statistical fractionation of the total angular momentum among all angular
momentum carrying degrees of freedom of the two separated fission fragments. SSM is applicable for very
small values of the fission barriers and when the angular momentum and excitation energy are very large. It
introduces definite predictions of the angular distributions, based on the level densities associated with a unique
final fragment configuration.

In the present work, we introduce a study for heavy ion reactions producing a heavier deformed nucleus
and free nucleons. The theory of these reactions is developed following the statistical scission model. In the

present work, we consider the heavy ion reaction 12 C + 197Au leading to three different exit channels. The

first case is that of outgoing particles as 205Tl + 4 1 P1 , while the second is that leading to 206Pb + 3 1 P1

and the third one result to the products of 202Hg + 5 1 P1 + 2 1 n0 . Numerical calculations of the angular
distributions of each case of heavy ion reaction are carried out at different values of the incident energies. The
common feature of all three reactions is that the exit channels are a deformed nucleus and few light particles.

The formalism of multifragmentation theory is introduced in section 2, following the statistical scission
model. Numerical calculations and results are presented in section 3. Discussion and conclusions are given in
scission 4.

2. Multifragmentation formalism

The relative cross section for the emitted fission fragments depends on the transmission coefficients, the
fission probability for a state in the composite nucleus and on the normalized rigid rotor functions. These

quantities are denoted by TlΓf(E, I, m)/Γ(E, I) and DI
M,m(θ) , respectively, where E is the excitation energy

of the composite nucleus and I is its spin with projection m . The quantity Γ(E, I) represents the total decay

of the states. The ratio TlΓf(E,I,m)/Γ(E,I) can be written as

[Γf(E, I, m)/Γf (E, I)] [Γf (E, I)/Γ(E, I)] (1)

Systems with finite evaporation residue cross sections are considered on the assumption that these cross sections
deplete the smaller values of I up to Imin . In our calculations the ratio Γf(E, I)/Γ(E, I) is assumed to be

unity for a range of angular momenta values Imin > I ≥ Imax , and zero otherwise. For the case that the target
and projectile spins as well as the spin projection are zero, the relative cross section is given by the expression
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as

W (E, θ) ∝
∑
I,m

(2I + 1)T I [Γf(E, I, m)/Γ(E,I)] · (I + 1/2)
∣∣DI

M=θ,m (θ)|2 (2)

with

Γf(E, I) =
∑
m

Γf(E, I, m)

In equation (2), the relative fission decay width Γf (E, I, m) is written as the product of the inverse cross section

and the density of the final states, considering the fission as a process of complex particle evaporation. Therefore

Γf (E,I,m) ∝
∑
�,s

(2� + 1)exp[−�2�
2/2TμR2

◦] ·
∣∣〈Sm� 0| Im〉

∣∣2 ρ (E, S, m). (3)

The orbital angular momentum � in the exit channel is perpendicular to the fission axis. The channel spin S

is the vector sum of the two fission fragment spins as s = i1 + i2 . The total energy available at the scission
configuration for the case � = 0 is given by the expression

E = Ecm + QFF − EK − ED − EPS , (4)

where Ecm is the center of mass energy in the entrance channel, QFF is the Q value of the fission reaction, EK

is the total kinetic energy of the fission fragments (FF) for � = 0, ED is the deformation energy of the fission

fragments, and EPS is the energy associated with precession (PS) particle emission. The total excitation energy

of the two fragments, including their thermal and intrinsic rotational energies, is E −ER(�) , where the orbital

rotational energy ER for angular momentum � is given by the function ER(�) = �2�
2/2μR2

C . μ is the reduced
mass of the fission channel while RC is the distance between the centers of the fission fragments at the scission
configuration. In equation (3), the product ρ(E, S, m)exp[ − ER(�)/T ] represents the intrinsic level density of
the two fission fragments in the constant temperature level-density formalism. In case of a fixed value for the
total angular momentum I, the probability of any given set values S, m and � is determined by the available
thermal excitation energy [12]. Density of states at scission can be calculated using the density of states of the

two fission fragments, (for uncorrelated fragment spins i1 and i2 ), the total spin S and its projection m on the

fission direction, which can be given semi-classically [11] by the expression

ρ(E, S, m) ≈
∫∫∫

ρ1(E∗
1 , i1)ρ2(E∗

2 , i2)δ3(E∗
1 + E∗

2 − E3)dE∗
1dE∗

2dE∗
3d3i1d

3i2 (5)

Here, E is the excitation energy at scission and is given by the sum of the excitation energies E∗
1 and E∗

2 of
the two fragments.

Also, the channel spin S = i1 + i2 couples with the orbital angular momentum � giving the total spin I .

Spherical fission fragments

In case of fission process with spherical fragments, the quantities ργ(Eγ) presented in equation (5) can
be replaced by their mean values as

ρ1(〈E∗
1〉) = ρ2(〈E∗

2〉) = ρ(〈E/2〉),
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where the spin cutoff parameters of the fragments are taken to be equal σ2
1 = σ2

2 = σ2 . The excitation energies
of the fission fragments at scission configuration depend on the orbital angular momentum � due to the collective

rotation of the system with influence on the density of states expressed by the factor exp(−�2�
2/2TμR2

C) in

equation (3). If the total excitation energy E∗
γ of a nucleus is large enough relative to its rotational energy

ER , then the density of states for one of the fragments can be approximated by the product of energy and spin
dependent terms as

ρ(E∗
γ , iγ) ≈ ρ[E∗

γ − ER(iγ), 0]

∝ ρ(E∗
γ)exp[ − (iγ + 1/2)2/2σ2].

(6)

Also, the integrals of the spin-dependent part of the state density in equation (5) can be expressed as sum over
iγ and mγ as ∫

ρ(iγ)d3iγ ∝
∫

exp[ − (iγ + 1/2)2/2σ2
γ ]i2γdiγdΩγ

∝ ∑
iγmγ

(2iγ + 1)exp[ − (iγ + 1/2)2/2σ2
γ].

(7)

Therefore, equation (5) becomes

ρ(S, m) ∝ ∑
i1m1i2m2

|〈 i1m1i2m2 |Sm 〉
∣∣2 ·(2i1 + 1)exp[ − (i1 + 1/2)2/2σ2]

·(2i2 + 1)exp[ − (i2 + 1/2)2/2σ2].
(8)

After performing the summation in equation (8), the form of ρ(S, m) is simplified to the form

ρ(S, m) ∝ (2S + 1)exp[ − (S + 1/2)2/2(2σ2)]. (9)

Introducing equation (9) into equation (3), and performing the sums over orbital angular momentum � and
channel spin S , the spin-dependent fission at a fixed excitation energy E is given by

Γf (I, m)/Γf (I) = exp( − m/2S2
0)/

∑
m.

exp( − m−)2/2S2
0). (10)

The variance S2
0 for spherical fragments is given by

S2
0 = 2σ2{[2σ2 + (μR2

CT/�
2)]/μR2

CT/�
2)},

or in the form
S2

0 = (2IoT/�
2)[(2Io + μR2

C)/μR2
C], (11)

since
σ2 = IoT/�

2 = (2/5)MR2T/�
2.

The quantities Io , T , M and R stand for the moment of inertia, nuclear temperature, mass, and radius of one
of the symmetric fragments, respectively. Introducing equation (10) into equation (2), the relative cross section
for fixed energy E is given by the expression as

W (θ) =
Imax∑
Imin

(2I+1)T

I

Σ
m=−I

[(2I+1)/2]
∣∣DI

M=0,m(θ)
∣∣2 exp( − m2/2S2

0)

I

Σ
m=−I

exp ( − m2/2S2
0)

. (12)
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3. Deformed fission fragments

The emission axis for fission fragments is assumed to coincide, in the case of aligned deformed fragments,
so that k1 = m1 and k2 = m2 .

The density of states for each one of the deformed fragments can be written as

ρ (E∗, i) ∝ ρ (E∗) exp
[
−

{
(i + 1/2)2/2σ2

⊥
}
−

{
m2/2σ2

eff

}]
, (13)

where m is the projection of the spin i on the symmetry axis of the nucleus coinciding with the fission direction.
The effective spin cutoff parameter σeff controls the dependence of the density of states with projection m on

the symmetry axis, where

σ2
eff = σ2

| |σ
2
⊥/(σ2

⊥ − σ2
| |). (14)

The quantities σ2
⊥ and σ2

| | are related to the corresponding moments of inertia I⊥ and I| | of a rigid rotor

for the case of rotation about an axis perpendicular or parallel to the symmetry axis, respectively, and to the

nuclear temperature T of the nucleus by the relation σ2
⊥ = I⊥T/�

2 and σ2
| | = I| |T/�

2 . Also, as has been done

in equation (7), the spin-dependent parts of the state density integrals in equation (5) can be expressed as a
sum over i and m as

∫
ρ(i)d3i ∝

∫
exp

[
−

{
(i + 1/2)2/2σ2

⊥

}
−

{
m2/2σ2

eff

}]
i2 didΩ

∝ ∑
i,m

(2i + 1) exp
[
−

{
(i + 1/2)2/2σ2

⊥
}
−

{
m2/2σ2

eff

}]
.

(15)

Therefore, the density of state for deformed fission fragments with channels spin S and projection m on the
fragments emission axis can be written as

ρ(S,m) ∝
∑

i1 m1 i2 m2

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

|〈i1 m1 i2 m2 |Sm 〉|2 (2i1 + 1)

·exp
[
−

{
(i1 + 1/2)2/2σ2

⊥} − {m2
1/2σ2

eff

}]

·(2i2 + 1)exp
[
−

{
(i2 + 1/2)2/2σ2

⊥
}
−

{
m2

2/2σ2
eff

}]

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

. (16)

Equation (16) can be approximated to the form

ρ(S,m) ∝ (2S + 1) exp
[
−

{
(S + 1/2)2/2χ2σ2

⊥
}
−

{
m2/2χσ2

eff

}]
. (17)

With this, approximation introduced in equation (3) allows one to calculate the ratio Γf(E, I, m)/Γ(E, I) for

fixed value of I and m . The summation over � and S in equation (3) leads to an equation of the same form

as equation (10), except that the variance S2
0 will then have the expressions

S2
0 = 2σ2

| |{[2σ2
⊥ + (TμR2

C/�
2)]/(TμR2

C/�
2) + 2σ2

⊥ − 2σ2
| |},

S2
0 = (2I | |T/�

2)[2I⊥ + μR2
C)/(μR2

C + 2I⊥ − 2I| |)].
(18)

In equation (18), σ2
⊥ , σ2

| | , I⊥ , I| | are the spin cutoff parameters and the moments of inertia for a single fission

fragments, rotating about an axis parallel and perpendicular to its symmetry axis (and fission axis), respectively.
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4. Numerical calculations and results

In the present work, we study the 12C + 197Au reactions in which three types of reaction products are
formed in the exit channel. Each of these types have has in the exit channel only one deformed fission fragment
and few protons or few protons and few neutrons. The present considered three types of the reactions in the

exit channel are 205pb + 3 1 P , 206T1 + 4 1 P and 202Hg + 5 1P + 2 1 n with reaction Q-values given as
-27.717 MeV, -34.47045 MeV and -53.85127 MeV, respectively. The angular distributions of fission products are

calculated by using the statistical scission model. The symmetric top wave functions
∣∣DI

M=0,m (θ)|2 appeared

in equation (2) can be written as (13),

∣∣DI
M=0,m (θ)| 2 ≈ (1/π)

[
(I + 1/2)2sin2θ − m2

]−1/2

(19)

while the variances S2
0 may be estimated using the formula

S2
0 =

∑
σ2

i , (20)

and where the summation is to be done for all fission fragments for each reaction. The spin cut-off factors
associated with the level density of each fission fragments is given by [13]

σ2
i = 2/5MR2T/�

2. (21)

M and R are the mass and the radius of each fragment and T is the nuclear temperature [14] expressed as

T = [8/A(Ecm + Q − EK)]
1/2 . (22)

In equation (22), A , Ecm and Q are the nucleon number, the center of mass bombarding energy and the
Q-value of the reaction channel leading to fission fragments, respectively. EK is the average summed kinetic
energies of the fragments given by

EK = 0.107Z2/A1/3 + 22MeV,

where Z and A are the charge and mass numbers of the compound nucleus which are in our case Z = 209 and
A = 85. For the case of deformed fission fragments, we used the relation

χ2/3(χ2 − 1)/χ2 + 1 = Isph/Ieff = (Isph/�
2)(T/K2

0 ).

Therefore σ2
def = 2/5(IeffT/�

2), where we used in the present calculations the value of χ = 2. The incident

laboratory energy is taken in the range 64 MeV per nucleon to 104 MeV per nucleon, which means that, in

the present case, 768 MeV to 1248 MeV, since the incident particle is 12C. This corresponds to center of mass
energy range 722.963 MeV to 11767.333 MeV, the values of which is very high relative to the deformation energy
and to the Q-value; so that in the present work, and for this reason, we consider ED ≈ 0.

Numerical calculations are carried out for angular distribution cross sections W (θ), the ratio W (θ)/W (90)

and also for the variances S2
0 for the three different types of the reaction products. The transmission coefficient

T� in all our calculations for all different cases is taken to be unity.

The obtained results of the present calculations are shown in Figures (1)–(19).
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Figure 1. Angular distributions of the fission fragments from the 12 C+ 197 Au →205 T181 + 4 1P1 reaction at different

values of the angular momentum. The nuclear temperature has a value T = 4.029 MeV. The laboratory energy is Elab

/ nucleon = 64 MeV.
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Figure 2. Angular distributions of the fission fragments from the 12 C+ 197 Au →205 T181 + 4 1P1 reaction at different

values of the angular momentum. The nuclear temperature has a value T = 4.534 MeV. The laboratory energy is Elab

/ nucleon = 74 MeV.

287



OSMAN

6

5

4

3

2

1

0

W
(θ

)/
W

(9
0)

0 30 60

L = 0

90 120
θ (deg.)

150 180

L = 10
L = 20
L = 30

12C + 197Au 205TI81 + 41p1

Elab / nucleon = 84 MeV

Figure 3. Angular distributions of the fission fragments from the 12 C+ 197 Au →205 T181 + 4 1P1 reaction at different

values of the angular momentum. The nuclear temperature has a value T = 4.989 MeV. The laboratory energy is Elab

/ nucleon = 84 MeV.
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Figure 4. Angular distributions of the fission fragments from the 12 C+ 197 Au →205 T181 + 4 1P1 reaction at different

values of the angular momentum. The nuclear temperature has a value T = 5.406 MeV. The laboratory energy is Elab

/ nucleon = 94 MeV.
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Figure 5. Angular distributions of the fission fragments from the 12 C+ 197 Au →205 T181 + 4 1P1 reaction at different

values of the angular momentum. The nuclear temperature has a value T = 5.792 MeV. The laboratory energy is Elab

/ nucleon = 104 MeV.
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Figure 6. Angular distributions of the fission fragments from the 12 C+ 197 Au →206 pb82 + 3 1P1 reaction at different

values of the angular momentum. The nuclear temperature has a value T = 4.060 MeV. The laboratory energy is Elab

/ nucleon = 64 MeV.
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Figure 7. Angular distributions of the fission fragments from the 12 C+ 197 Au →206 pb82 + 3 1P1 reaction at different

values of the angular momentum. The nuclear temperature has a value T = 4.563 MeV. The laboratory energy is Elab

/ nucleon = 74 MeV.
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Figure 8. Angular distributions of the fission fragments from the 12 C+ 197 Au →206 pb82 + 3 1P1 reaction at different

values of the angular momentum. The nuclear temperature has a value T = 5.015 MeV. The laboratory energy is Elab

/ nucleon = 84 MeV.
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Figure 9. Angular distributions of the fission fragments from the 12 C+ 197 Au →206 pb82 + 3 1P1 reaction at different

values of the angular momentum. The nuclear temperature has a value T = 5.814 MeV. The laboratory energy is Elab

/ nucleon = 94 MeV.
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Figure 10. Angular distributions of the fission fragments from the 12 C+ 197 Au →206 pb82 + 3 1P1 reaction at different

values of the angular momentum. The nuclear temperature has a value T = 6.176 MeV. The laboratory energy is Elab

/ nucleon = 104 MeV.
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Figure 11. Angular distributions of the fission fragments from the 12 C+ 197 Au →202 Hg80 + 5 1P1
1+2 n0 reaction at

different values of the angular momentum. The nuclear temperature has a value T = 4.452 MeV. The laboratory energy

is Elab / nucleon = 64 MeV.
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Figure 12. Angular distributions of the fission fragments from the 12 C+ 197 Au →202 Hg80 + 5 1P1
1+2 n0 reaction at

different values of the angular momentum. The nuclear temperature has a value T = 4.914 MeV. The laboratory energy

is Elab / nucleon = 74 MeV.
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Figure 13. Angular distributions of the fission fragments from the 12 C+ 197 Au →202 Hg80 + 5 1P1
1+2 n0 reaction at

different values of the angular momentum. The nuclear temperature has a value T = 5.337 MeV. The laboratory energy

is Elab / nucleon = 84 MeV.
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Figure 14. Angular distributions of the fission fragments from the 12 C+ 197 Au →202 Hg80 + 5 1P1
1+2 n0 reaction at

different values of the angular momentum. The nuclear temperature has a value T = 5.728 MeV. The laboratory energy

is Elab / nucleon = 94 MeV.

293



OSMAN

6

5

4

3

2

1

0

W
(θ

)/
W

(9
0)

0 30 60

L = 0

90 120
θ (deg.)

150 180

L = 10

L = 20

L = 30

12C + 197Au 202Hg + 51p1 + 21n0

Elab / nucleon = 104 MeV

Figure 15. Angular distributions of the fission fragments from the 12 C+ 197 Au →202 Hg80 + 5 1P1
1+2 n0 reaction at

different values of the angular momentum. The nuclear temperature has a value T = 6.094 MeV. The laboratory energy

is Elab / nucleon = 104 MeV.
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Figure 17. Angular distributions of the emitted protons as function of time, for time interval of 120 fm/c. Positive

angels correspond to positive momentum transfer component of the impact parameter of the emitted particles. The solid

curves stand for the present theoretical calculations. The dots are the experimental data from reference [18].
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Figure 18. Angular distributions of the emitted protons as function of time, for time interval of 180 fm/c. Positive

angels correspond to positive momentum transfer component of the impact parameter of the emitted particles. The solid

curves stand for the present theoretical calculations. The dots are the experimental data from reference [18].
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Figure 19. The variances of the fission fragments and their dependence on the nuclear temperature.

In Figure (1), the angular distributions of the ratio W (θ)/W (90) are shown at incident energy 64 MeV

per nucleon for different values of the total angular momentum for outgoing reaction products 205T1 + 41 P .
From the Figure (1), we see that the ratios W (θ)/W (90) are symmetric around the angel θ = 90. Also, the

ratio W (θ)/W (90) in the angular range from θ = 10–30◦ decreases as L increases and the most greater value

is obtained for L = 0, while the most smaller value for W (θ)/W (90) is obtained for L = 10. We notice also

that W (θ)/W (90) in the angular range θ = 30–60◦ decreases as L increases and that ratios W (θ)/W (90)

are identical for the cases of angular momenta with L =20, L = 30. In this region, the ratio W (θ)/W (90) is
the smallest value for L = 0, while the greatest value is obtained for L = 10. In the angular range θ = 60–90◦ ,
the calculated ratios W (θ)/W (90) for the cases of angular momenta with values L = 10, L = 20, L = 30 are

the same and W (θ)/W (90) for L = 0 is the smaller than the three others for L = 10, 20, 30. At the angel θ

= 90◦ , all the calculated values of the ratio W (θ)/W (90) are identical for all values of angular momenta with
values L = 10, L = 20, L = 30.

Figures (2)–(5) show the present calculations of the ratios W (θ)/W (90) for different values of the
incident energies per nucleons at 74, 84, 94 and 104 MeV, showing the same behavior as that described in
Figure (1). Numerical calculations are also carried out for the other two types of reaction products types of

reaction products where for the reaction products type 206pb82 + 3 1P1 the calculations are shown in Figures

(6)–(10), while for the case of reaction products type 202Hg80 + 5 1 P1 + 2 1 n0 the calculations are given in

Figures (11)–(15).
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The angular distributions of the emitted particles as a function of the emission time are shown in Figures
(16)–(18), for different values of time intervals. The positive angels correspond to positive momentum transfer
component respect to the direction of the impact parameter. Most of the emitted particles come from the hot
excited subsystem.

The calculated values of the variances S2
0 as a function of the nuclear temperature are shown in Figure

(19) for the three reaction products type 205T181+41 P1 , 206Pb82 +31 P1 and 202Hg80+5 1 P1 +2 1 n0 .

The Q-values for these reactions are -34.470 MeV, -27.717 MeV and -53.851 MeV, respectively. Also, the
obtained results of the calculated values of the variances for the different reaction products, incident energies
and temperatures T are listed in Table 1.

Table 1. Calculated values of the variances.

Reaction Products
G

(MeV)
Elab

(MeV)
T

(MeV)
S2

0
(MeV)

206pb82 + 3 1P1

205T181 + 4 1P1

202Hg80 + 5 1P1 + 2 1n0

−27.717

−34.470

−53.851

64
74
84
94
104
64
74
84
94
104
64
74
84
94
104

4.060
4.563
5.015
5.814
6.176
4.029
4.534
4.989
5.406
5.792
4.452
4.914
5.337
5.728
6.094

18.394
20.668
22.716
26.337
27.973
18.104
20.376
22.419
24.291
26.028
19.527
21.555
23.407
25.124
26.730

5. Discussion and conclusion

In the present work, the statistical scission model is used in studying fission process from heavy ion

interactions. We considered the case of 12C interacting with 197Au target leading to fission products of a
deformed nucleus and few nucleons. The angular distributions of the fission fragments have been numerically
calculated for different incident energies and nuclear temperatures.

The angular distributions as shown in Figures (1)–(15) are strongly dependent on the nuclear temperature

showing symmetric shapes around θ = 90◦ . Figures (16)–(18) show good agreement between the present

theoretical calculations of the emitted particles distributions (solid curves) to those with experimental proton
cross-sections. Also, the calculated variances are temperature dependent. The present calculations are in good
agreements with heavy ion induced fission [15] calculations and with multifragmentation [16, 17] calculations.

Therefore, we conclude that the heavy ion induced fission, leading to a deformed nucleus with few
nucleons, are well described using the statistical scission model. The present calculations show that the angular
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distributions and the variances are strongly dependent on the nuclear temperature, which means that it should
be included in any calculations.
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