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Abstract

The first ab-initio calculations were carried out for the electronic and structural properties of BInN boron

ternary alloys. The full potential linearized augmented plane wave (FP-LAPW) method was employed within

density functional theory (DFT). We have investigated the lattice parameters and band gap energies. The

lattice constant a exhibits a small downward bowing. The calculated band gap variation gives a small bowing

in good agreement with the experimental reports. We notice a direct to indirect band gap crossover at x =

0.83.

Key Words: Lattice parameter, bulk modulus, pressure derivative and band gap, FP-LAPW, WIEN (2k)

code.

1. Introduction

The III-nitride semiconductor has received much attention in the past few years since they have important
applications in light emitting diodes (LEDs) and short wavelength laser diodes (LD), due mainly to their
relatively wide band gap corresponding to the visible region to the near ultraviolet region of the spectrum and
high emission efficiency. In addition, bright blue LEDs based on III-nitride semiconductors have already paved
the way for full-color displays and for mixing three primary colors to obtain white light for illumination [1]. As
well as, the hardness and large bulk modulus make them ideal protective coating materials. It is well-known
that the binary zinc blend BN is an indirect band-gap alloy and the binary zinc blend InN is a direct band-gap
alloy. Therefore, the ternary zinc blend BInN alloy with an increase of the aluminum composition exhibits a
crossover point where the direct-to-indirect band-gap transition occurs. It is an interesting and important topic
to define the crossover point. The emitting wavelength is dependent on the band gap energy of material, and
the band gap bowing parameter is important for calculating the band gap energy of III-nitride ternary material.

The objective of this work is to investigate the electronic and structural properties of ternary zinc blend
BInN alloy by using first-principles calculations. The method is based on the FP-LAPW based density functional
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theory (DFT) in the local density approximation (LDA). The electronic properties, including the band gap
energy obtained from band structure, the band gap bowing, and the crossover point of the direct-to-indirect
band-gap transition, will be discussed. Furthermore, the structural properties, such as the equilibrium lattice
constant, total energy, bulk modulus, and the pressure derivative of bulk modulus, will be calculated.

2. Computational method

Total energy calculations are performed using the full potential linearized augmented plane wave (FP-

LAPW). In this method, the unit cell is partitioned into non-overlapping muffin-tin spheres around the atomic
sites, and an interstitial region. Among these two types of regions different basis sets are used: the Kohn-Sham
equation which is based on the density functional theory (DFT) [2–3] is solved in a self consistent scheme.

For the exchange-correlation potential we use the local density approximation (LDA) [4–5] In the following

calculations, we distinguish the B (1s2), In (1s2 2s2 2p6 3s2 3p6 4s2 4p6 3d10) and N (1s2) inner-shell electrons

from the valence electrons of B (2 s2 2p1), In (4d105s2 5p1) and N (2s2 2p3) shells. For these calculations the

existing WIEN2k code [6] is used and applied to large unit cells.

The muffin-tin radii adopted were 1.45 Å (B), 1.99 (In) and 1.7 5 Å (N). In the following, we use the

full-potential LAPW (FPLAPW) method to study the electronic properties under pressure for the binaries zinc
blend, BN and InN. The maximum lvalue for the wave function expansion inside the atomic spheres was confined
to lmax =10. In order to achieve energy eigenvalues convergence, the wave functions in the interstitial region
are expanded in plane waves with a cutoff of RMT ∗ Kmax = 8 (where is Kmax = 10 the maximum modulus

for the reciprocal lattice vector, and RMT is the average radius of the MT spheres). The k integration over the

Brillouin zone is performed using Monkhorst and Pack [7] mesh, yielding to 73 kpoints in the irreducible wedge
of the Brillouin zone for both zinc blend structures. The iteration process is repeated until the calculated total
energy of the crystal converges to less than 0.1 mRy.

3. Result and discussion

To model the ternary zinc blend Bx In1−x N alloys, we employ an 8-atom Bn In4−n N4 super cell with
periodic boundary conditions. Once the ratio between the B and In atoms is specified, the geometrical arrange-
ment of B-In atoms is determined by translation of primitive vector of the primitive cell. The configuration
utilized in this specific study is a fixed atomic configuration and the statistics and configuration average have
not been taken into account. The minimization of the total energy with respect to the lattice constant in the
ground state is performed for n = 0 to 4, which represents the boron composition x of 0, 0.25, 0.5, 0.75 and
1. Figure 1 shows the equilibrium lattice constant relation to the boron composition x . By fitting the results

shown in Figure 1 with a quadratic equation of the boron composition x , the coefficient of x2 is -0.014. It
indicates that lattice constant of zinc blend Bx In1−x N exhibits a small deviation from the linear Vegard’s law.

In addition, the lattice constant of BN obtained by our calculation is 3.585 Å, which is in agreement with the

experimental result of 3.615 Å [8–10]. It is worth noting that the lattice constants of both InN and BN obtained
in this study are smaller than the experimental ones. The lattice constant is underestimated as a result of the
over binding effect from LDA method. Underestimation of the band gap energy but accurate estimation of the
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valence band is a well-known consequence of using LDA calculations. To amend these band gap energies, the
results are calculated using scissors operator with a rigid upward shift of the conduction band with respect to
the valence band from the known band gap energy of InN (0.9 eV) [11] and BN (9.09 eV) [12], as shown in
Table 1.
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Figure 1. Lattice constant of Bx In1−x N as a function of boron composition x .

Table 1. Direct Γ − Γ and indirect Γ-X band gaps of BN and InN and their alloys at equilibrium volume (all energies

are in eV).

EΓΓ (eV) EΓX (eV)
InN

Our.cal (LDA)
Other. Cal
Experiment

0.0
0.7[13]
0.9[11]

5.16

B0.25In0.75N
Our.cal (LDA) 0.16 4.52

B0.5In0.5N
Our.cal (LDA) 1.1 5.37

B0.75In0.25N
Our.cal (LDA) 3.15 5.4

BN
Our.cal (LDA)
Other. Cal

8.81
8.6 [12] 9.09 [12]

4.44
4.24[12]

The difference between the corrected and LDA energies of the ternary alloys is obtained from the linear
combination of the differences of the InN and BN. The band gap energy of the zinc blend Bx In1−xN obtained
with the equilibrium lattice constant is plotted in Figure 2. The band gap energy of Bx In1−x N can be depicted
as a function of the boron composition x , and be expressed using the following formula:
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Eg(x) = xEg,BN + (1 − x)Eg,InN − bx(1 − x), (1)

where Eg(x) denotes the band gap energy of Bx In1−xN; Eg,BN and Eg,InN denote the band gap energy of

BN and InN, respectively; and b is the band gap bowing parameter of Bx In1−x N. By fitting the results shown
in Figure 2 with equation (1), the direct (Γ–Γ) bowing parameter of 13.84 eV and indirect (Γ–X) bowing
parameter of -2.16 eV are obtained. There is a direct–indirect crossover at x = 0.83 for which the band gap
energy is 5.07 eV. Some researchers are devoted to the study of both the bowing parameter and the crossover
point of Bx In1−x N by theoretical calculations, but there are no experimental results available for the zinc
blend structure. However, the results obtained by different researchers are quite diverging. For the direct
bowing parameter the results are 11.18 eV [14]. Few studies about the indirect bowing parameter the available

results are 6.736 eV [14]. For the direct–indirect crossover point the results are 0.35[14]. The physical origin
of the band gap bowing can be attributed to the lattice mismatch between BN and InN. The larger lattice
mismatch between the two binary alloys will result in the larger bowing. Qualitatively, the band gap bowing is
larger for Bx In1−x N. The discrepancy of the bowing among the reports in the literature may be due to the
partial ordering of alloy structures and the bond-length relaxation effect in the alloy crystal structures. The
smaller lattice constant of BN in this study causes the larger lattice mismatch between BN and InN. Therefore,
the larger bowing parameter is expected.
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Figure 2. Band gap energy of Bx In1−x N as a function of boron composition x .

For the calculation of bulk modulus of zinc blend Bx In1−x N, geometry optimizations are performed with
the lattice constant fixed by a full relaxation of the internal coordinates. A more rigorous way to calculate this
quantity would be to plot total energy versus cell volume for a variety of cell volumes and to fit a curve to this
plot. The bulk modulus can then be calculated from the Murnaghan equation of state [15], and its third-order
expansion of volume applied in this study is expressed as

E(V ) − E(V0) =
B0 · V

B′
0

[
(V0/V )B′

0

B′
0 − 1

+ 1

]
− B0V

B′
0 − 1

, (2)
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where E is the total energy at cell volume V , E0 is the total energy at equilibrium volume V0 , B0 is bulk
modulus, and B′

0 is the pressure derivative of the bulk modulus. The total energy of zinc blend Bx In1−x N as a

function of volume ratio V /V0 for specific cases of x = 0, 0.5 and 1 is shown in Figures 3(a–c). By fitting the

results shown in Figures 3(a–c) with equation (2), we obtain the bulk modulus and their pressure derivatives
of zinc blend Bx In1−xN as shown in Table 2, where the results of and B0.75 In0.25N are also included. For
comparison, some results of binaries BN and InN reported in the literature are also shown in Table 2. For BN,
B0 = 404 GPa and B′

0 = 3.71 obtained in this study are in good agreement with B0 = 386 GPa and B′
0 = 3.6

reported in [16–17]. The value is also in close agreement with the results of 397 GPa reported in [16] and 366

GPa reported in [17]. The larger bulk modulus obtained is due to the smaller lattice constant of BN obtained
in this study.
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Figure 3. Total energy as a function of volume ratio. The line represents the fit of theoretical data to a third-order

Murnaghan equation of state: (a) InN, (b) B0.5 In0.5 N, and (c) BN.

In addition, the bulk modulus of zinc blend Bx In1−x N increases with boron composition x . This is
because B–N is more tightly bound than In–N and results in a higher covalence for B–N than for In–N. On
the contrary, B′

0 monotonically decreased with increase in boron composition x . For InN, the B0 = 155 GPa
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and B′
0 = 3.76 obtained in this study is smaller than 386 GPa reported in [18]. This is because the lattice

constant of 4.7885 Å for InN, reported in [18], is smaller than that of 4.980 Å observed in this study. Moreover,
the bulk modulus of as a function Bx In1−x N of the boron composition x are plotted in Figure 4. To proceed
further into analysis of the amount of deviation from the linear relation between the bulk modulus and the
boron composition x , the curve shown in Figure 5 can be approximated by the formula

B(x) = xBBN + (1 − x)BInN − Bδx(1 − x), (3)

Table 2. The calculated lattice parameter a , bulk modulus B and its pressure derivatives B′ for Bx In1−x N and its

binary compounds. Available experimental and theoretical data are also given for comparison.

a(Å) B (GPa) B′

InN
Our.cal (LDA)

Other calc

Experiment

4.94
4.92 [19] 5.004[20]
4.947 [21] 4.968[22]
4.986 [23]

155
139[19] 140 [20]
144[21] 147 [22]
137[24]

3.76
4.4[19] 4.38[20]
4.561[21]
4.4 [22]

B0.25In0.75N
Our.cal (LDA) 4.75 166 4.24

B0.5In0.5N
Our.cal (LDA) 4.51 201 3.61

B0.75In0.25N
Our.cal (LDA) 4.14 255 3.88

BN
Our.cal (LDA)
Other calc

Experiment

3.585
3.575 [16] 3.576 [16]
3.649 [18]
3.615[8][9][10]

404
386 [16] 397[16]
366 [18]
369 [8]

3.71
3.6 [17] 2.91[18]
3.94 [18]
4 [8]
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Figure 4. Bulk modulus of Bx In1−x N as a function of boron composition x .
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where BBN and BInN denote the bulk modulus of BN and InN, respectively; and Bδ is the deviation parameter
of bulk modulus for zinc blend. If we best fit the results shown in Figure 4 with equation (3),Bδ = 337.14
GPa is obtained. This indicates that the bulk modulus of ternary zinc blend is s Bx In1−xN smaller than that
obtained from a linear combination of the bulk modulus of binary BN and InN.

4. Conclusion

Numerical analysis based on first-principles calculations is utilized to investigate the electronic and
structural properties of zinc blend Bx In1−x N. From the calculated results, it is found that the lattice constant
in Bx In1−x N the ground state has a small deviation from the linear Vegard’s law. The deviation parameter

that is the second order coefficient of the quadratic equation of Boron composition is 0.24 Å. The direct bowing
parameter of 13.84 eV and indirect bowing parameter of -2.16 eV are obtained. There is a direct-indirect
crossover near x = 0.83 for which the band gap energy is 5.07 eV. In addition, the bulk modulus of zinc blend
Bx In1−xN monotonically increased with increase of composition x . The bulk modulus of 155 GPa for InN
increases to that of 404 GPa for BN, and the deviation parameter of bulk modulus for zinc blend is 337.14 GPa
Bx In1−xN.

However, the pressure derivative of the bulk modulus monotonically decreased with increase of Boron
composition x , decreasing from 3.76 for InN to 3.71 for BN.
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