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Abstract

Coherent and ballistic phonon transport via nanojunctions between bcc lattices is presented. The model

system A/B/A consists of a finite number of bcc atomic layers of an element B sandwiched between two

bcc semi-infinite crystals of another element A. The matching method theoretical approach is used to study

the dynamical properties of the bcc sandwich system. A calculation is presented for the coherent reflection

and transmission scattering probabilities of the system phonons, as elements of a Landauer type scattering

matrix. The scattering and transmission spectra via the nanojunctions are analyzed as a function of the

incident frequency per propagating mode of the perfect bcc waveguides and as a function of the thickness of

the sandwiched film and of a parameter that describes the nanojunction zones. The possible experimental

measurements of this ballistic transmission in comparison with theoretical results should be a useful probe

for the determination of alloying force constants across the interface between two such elements. Our

results show that the nanojunction is an effective phonon splitter and suggest that its characteristics may

be controlled by varying its nanometric parameters. Knowledge of these characteristics enables the authors

to study all the vibrational properties of such a system.
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1. Introduction

The theoretical and experimental understanding of the phonons and the dynamical properties of surfaces
[1], with and without adsorbed atomic monolayer, are presently at a level comparable to that of the phonons of
bulk in crystals. On the other hand, results of work on phonons in the adsorbed thin layers, interface and the
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sandwich systems have yet to make their debut [2–3]. Recently in the largest laboratories of the world, several

works [4–8] have been launched, with more attention accorded to sandwich systems.

A sandwich system is constituted from three different sub-systems: an ultra thin film and two semi-
infinite materials. The thin film is placed between surfaces of both semi-infinite systems. This leads to the
formation of two nanojunctions in the sandwiched system, due to both engendered interfaces.

Current techniques make possible the fabrication of nanojunctions which consist of only few atomic
layers sandwiched between the semi-infinite crystals. Such nanojunctions are of increasing importance in many
technical applications, [9–11]. The use of such nanojunctions in high technology requires a necessary basic
knowledge for the adequate control of their properties. It is hence of interest to develop numerical calculations for
appropriate models for these interfaces; and thus important focus is now being placed on theoretical techniques
[2, 3, 12, 13] that address the problem of phonon transport across interfaces defined at the nanoscale and atomic
level.

The purpose of this work is to present a calculation for the phonon ballistic transmission via a nanojunc-
tion of the A/B/A type, where B is an ultra thin film sandwiched between two bcc semi-infinite A crystals. In
particular, we apply the theoretical calculations to the case where the thin film B is composed respectively by
one, three and five atomic layers. A typical geometry is shown in Figure 1. We indicate that the dynamical
properties of composite materials with surfaces or interfaces in the case of simple cubic system were also studied
previously [14].
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Figure 1. Schematic representations of a sandwiched B thin film between two perfect bcc semi-infinite A lattices. In

the perfect lattice A, the atoms have the mass mA and are connected to each other by elastic force kA . In B lattice,

each atom has the mass mB and is connected by elastic force kB . Atoms on opposite sides of the nanojunction are

connected by elastic force kAB . The layers m =0,. . . , n constitute the slab zone.
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In Section I, a description of the model is given and equations of motion are derived in a convenient form.
Our study uses the harmonic approximation [15] and the equations of motion consider interaction between
the nearest neighbors. In Section II, we present the expressions of the coherent and ballistic transmission and
reflection coefficients as a function of the incident frequency, followed by a brief outline of the numerical algorithm
used to evaluate these quantities. In Section III, we give the principal numerical results, their interpretations
for the cases examined. Conclusions of this work is given in Section IV.

2. Basic elements of the model

We formulate the problem of phonon transmission across a two bcc solid-solid interfaces (labeled sandwich

system) by considering two identical semi-infinite lattices A attached to a “scattering region.” The two semi-
infinite perfect crystals are envisaged as waveguides for incident and scattered phonons. The scattering region
(defect domain) consists of a finite number of bcc layers of lattice B integrated as a nanostructure coupling the
independent two semi-infinite bcc A waveguides. A typical geometry is shown in Figure 1. The sandwiched film
corresponds to the grey area. It gives two effective nanojunction domains.

The elastic constants on the perfect lattices, which represent the inter-atomic interactions in the harmonic
approximation, are considered as kA and kB for nearest neighbor, respectively, on the A and B lattices. The
elastic constants between neighbor sites, at the nanojunction domain, may differ from perfect values, and is
hence labeled kAB . The atomic masses, of A and B lattices, are denoted, respectively, by mA and mB . It is
convenient next to define the following ratios: μ = mB /mA , rd = kAB /kA and rB = kB /kA . For simplicity
we consider identical interatomic distance a between all adjacent atomic sites in different Cartesian directions on
the interface domain and on the perfect bcc waveguide, neglecting any relaxation effects. The spacing between

nearest neighbors is (
√

3/2)a . We take the axes x and y to be parallel to the plane of the lattices A and B,
and the z -axis normal to the plane of the surfaces.

The dynamics of the perfect bcc system are described by the equations of motion of atomic sites l , which
in the harmonic approximation may be expressed as

ω2m(l)uα(l) = −
∑

l′�=l

∑

β

k(l, l′)dαdβ/d2[uβ(l) − uβ(l′)] (1)

for (α , β ) ∈ {x, y, z}, and m(l) is the atomic mass at l .

The radius vector d between the atomic sites land l′ has Cartesian components dα . The elastic force
constant between two sites is k(l , l′). The uα(l) is the corresponding vibration displacement vector for site l .

For sites land l′ distant from the inhomogeneous boundary to the left and right of the nanojunctions in
Figure 1, the equations of motion may be cast in the matrix form

[Ω2I − D(eiϕx, eiϕy, eiϕz)]|u >= 0 (2)

where [Ω2I – D(eiϕx , eiϕy , eiϕz)] is a 3×3 matrix, and |u > is the corresponding vector for a column of

the perfect bcc waveguide, I denotes a unit matrix. The quantities eiϕx , eiϕy , and eiϕz , are the Bloch phase
factors along the principal axes. Here, ϕα = qαa is the normalized wave vector, and runs over the interval
[–π , +π ] in the first BZ. Ω = ω / ω0 is a dimensionless frequency. Note that the characteristic frequency ω0

is not the same for the perfect A and B lattices; ω0 =
√

kA/mA for A, and ω0 =
√

kB/mB for B.
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By diagonalizing the matrix of equation (2), one obtains the phonon dispersion branches for the perfect
waveguides. The branches along the z -direction are presented in Figure 2, for a choice of incident angle ϕy =
ϕy = 0, in terms of the normalized frequency for each of the A and B systems in the present approximation.
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Figure 2. Typical dispersion curves of the perfect bcc crystallographic waveguide, presented over kza = [-π , +π ] the

first Brillouin zone, for incidence angle ϕx = ϕy = 0.

To illustrate the model, the propagating modes for the bcc perfect waveguides are shown in Figure 2 for a choice

of incident angle ϕx = ϕy = 0, as a function of the normalized wavevector ϕz = kza , where ϕz runs in the interval [-π

, +π ] over the first Brillouin zone (BZ).

In this direction: (ϕx = 0 and ϕy = 0), there are three acoustical modes characterized by the limiting behavior

Ω1 , Ω2 and Ω3 of their phonon branches, tending to zero frequency when the wavevector tends to zero. We note that

two modes are degenerate in the interval frequency Ω ∈ [0, 2.32].

3. Nanostructure boundary dynamics and scattering

Analysis of the dynamics of the inhomogeneous atomic nanostructure generates an infinite set of coupled equations

on both sides of the atomic nanojunction. In order to render the problem tractable we need to decouple the dynamics

of a representative and irreducible set of sites at the inhomogeneous boundary of the interface domain from the rest of

the system. This irreducible set is located in the scattering zone M of Figure 1.

For an incoming propagating wave in eigenmode with index i = 1, 2, 3, incident from the bottom in Figure 1 at

a frequency Ω, the resulting scattered waves due to the presence of the nanojunction domain are composed of reflected

and transmitted parts. They are both solutions of equation (2) at the same frequency.

For atoms inside the perfect waveguide A to the bottom of the scattering region, the Cartesian components α

of the displacement field u′α may be expressed as the sum of an incident propagating wave and a superposition of the

reflected eigenmodes of the perfect waveguide A at the same frequency. It may be written, using the matching approach

[16–18], as

u′α = uiη
m
i + Σjη

−m
j Rijuj , withm < 0, (3)

whereas for a site in the region to the top of the boundary (zone D), this is given as

uα = Σjη
m
j Tijuj with m > n. (4)
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The coefficients Rij denote the reflection amplitudes into eigenmodes j = 1, 2, 3 of the perfect bcc waveguide for

the incident propagating wave i , and the quantities Tij are the corresponding transmission coefficients for i = 1, 2, 3

eigenmodes. The vectorsui and uj are the associated eigenvectors of the dynamic matrix for the bcc perfect waveguide,

at the frequency Ω and at the given incident angle.

Consider a Hilbert space for the scattering and denote by [|R〉 , |T 〉] the basis vector for the reflection and

transmission coefficients in this space, and by |U〉 that for the displacements of a set of irreducible sites in the scattering

domain. The equations of motion for the nanostructure, coupled to the rest of the systems, may be written in terms of

vector [|U〉 , |R〉 , |T 〉] . Using the appropriate transformations connecting the displacement fields in equations (3), (4),

we obtain a square linear inhomogeneous system of the equations of the form

[Ω2I − D(eiϕx, eiϕy , eiϕz, μ, rB , rd)] [|U〉 , |R〉 , |T 〉] = − |IH〉 (5)

where − |IH〉 is the vector containing the inhomogeneous terms that describe the incident propagating wave when

mapped appropriately onto the basis vectors. The solution to equation (5) gives, for any incident phonon in eigenmode

i , the vector |U〉 as well as the reflection and transmission amplitudes.

The solution to equation (5) yields the displacement |U〉 of the irreducible set of atomic sites for the bcc

sandwiched film, as well as the components Rij and Tij . The scattering behavior is usually described in terms of

the scattering matrix, which elements are given by the relative reflection and transmission probabilities r ij and t ij at

the scattering frequency Ω. These are given by the relation

rij = (Vgi/Vgi)|Rij |2 and tij = (Vgj/Vgi)|Tij |2. (6)

To ensure unitarity of the scattering matrix, the scattered waves have to be normalized with respect to their group

velocity. Vgi is the group velocity of the eigenmodes, set equal to zero for evanescent modes. We can further define

total reflection and transmission probabilities for a given eigenmode at scattering frequency Ω by summing over all the

contributions

ri,ϕx,ϕy (Ω) =
�

j

rij(Ω) and ti,ϕx,ϕy (Ω) =
�

j

tij(Ω) (7)

In order to describe the overall transmission of the sandwich system A/B/A at a given frequency Ω and at the given

incident angle, it is useful to define the total transmission of the system (or the domain defect transmittance) t(Ω), by

summing over all input and output channels:

t(Ω) =
�

i

�

j

tij(Ω). (8)

The transmission probabilities per eigenmode iand the average phonon transmittance are important quantities to

calculate since each corresponds to an experimentally measurable observable. They play an essential role in the

calculation, for example, of the net heat current across a given junction between semi-infinite domains held at different

temperatures [19].

4. Numerical results and discussion

Phonon transmission via the nanojunction zones in the A/B/A system is studied with reference to elastic

waves incident from the bottom to the top of the scattering region (see Figure 1). The numerical applications of

our scattering model are presented for three configurations of the nanostructure B sandwiched between the A lattices.

These configurations are determined by the number of the layers of the thinner film B; the first corresponds to the B
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lattice having one atomic layer, the second for three atomic layers and finally, the B film is composed by five atomic

layers. In each configuration, the phonon transmission is carried out for three possibilities of the atomic mass of the B

lattice in comparison of the atomic mass of the A lattice. They are named, respectively, light (μ = 0 .5), homogenous

(μ = 1.0) and heavy defect masses (μ = 1.5).

Furthermore, for each possibility of the atomic masses of the B lattice, we examine the phonon transmission under

three different boundary conditions as regards the local elastic interaction on the sandwiched film and the nanojunction

domain. The force elastic constant kB in lattice B takes, respectively, the values 0.5, 1.0 and 1.5. In the other hand, at

the interface domain, the elastic interaction kAB is (kA + kB)/2 in all cases.

The first situation corresponds to a softening of the B elastic constants in comparison to the bulk of the lattice A,

the second case is the situation where the elastic constants are the same, and the third case corresponds to a hardening

of its elastic constants.
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Figure 3. Phonon transmission coefficient of the sandwich system A/B/A, at a given incidence angle ϕx = ϕy = 0, as

a function of frequency. The number of layers for the sandwiched B film is m = 1 layer. Solid lines are obtained when

rB = 0.5 (softening case). The dotted lines correspond torB = 1.0 (homogenous case). The dashed lines correspond to

rB = 1.5 (hardening case). In each case, the elastic constant kAB is taken (kA + kB)/2. The transmission coefficients

are arranged in columns from light mass defect at the left to heavy mass defect at the right.
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Although this value does not correspond to exact crystalline values, which may be significant in some metals [20],

it is a reasonable working value to illustrate the calculation. The purpose of this procedure is to investigate how the local

dynamics respond to local changes in the elastic properties. Note that the theory can be tested with arbitrary values via

the construction of acoustic models in a laboratory framework.

The results of the examined configurations, corresponding to one layer, three and five layers of the B sandwiched

thin film are shown, respectively, in Figure 3, Figure 4 and Figure 5. We have arranged the situations studied in

columns, from light defect (μ = 0.5) at the left to heavy defect (μ = 1.5) at the right. The results show some general

characteristic, as well as some specific phonon behavior, for all cases in each configuration of the considered number of

layers of the bcc B lattice. The spectra are in general sensitive to the changes of the atomic masses and the elastic force

constants on the boundary. The phonon transmission is less or equal to the equivalent of one phonon throughout the

propagating frequency interval. This illustrates how the B atomic layer at the heart of the defect zone, constricts the

transmission to a maximum of one phonon at a time, characteristic of the atomic layer on the interval contact between

the bcc lattices.

The transmission and reflection cross sections verify the unitarity condition for the scattering matrix, and this is

used throughout as a check on the numerical calculation.
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Figure 4. As in Figure 3, for the sandwiched B film, in the case where m = 3 layers.
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In Figure 3, numerical results are presented for the total phonon transmission for the incident modes, as a function

of scattering frequency Ω, at a given incidence ϕx = ϕy = 0, for the three situations examined of the mass lattice mB .

As expected, the influence of the mass defect is smallest when the scattering frequency Ω → 0, leading to a minimum

in the transmission t → 0. As one increases the frequency the mass defect leads to a maximum in the transmission.

Near the zone boundaries, the transmission gives zero. This is observed in the studied situations, independently of the

strength of the boundary. We note that the interaction between the localized modes introduced by the variation of the

atomic masses of the B nanostructure and the propagating modes of the perfect A lattice leads to oscillation picks in

the vibration spectra. These oscillations shift to higher (lower) frequencies for light (heavy) defect masses. The acoustic

modes present no significant transmission for low frequencies, for all cases of the elastic constant considered on the

sandwiched domain. The absence is probably due to the relatively long lattice parameter of the modes in this frequency

interval, in comparison with the wavelengths, and also due to the interference effects between the modes on the interface

zone when modifying the boundary, at a given incidence.

Another general characteristic of the phonon transmission is the displacement of its spectral features to higher

frequencies with increasing hardening of the elastic force constants interface interaction in the sandwich domain, in the

all cases studied, which is a signature of the nanojunction matching necessary for the transmission.
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Figure 5. As in Figure 3, for the sandwiched B film, in the case where m = 5 layers.
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In a similar manner, the corresponding numerical scattering results for the two other configurations, with three

and five layers of the sandwiched lattice B between two A bcc semi-infinite lattices, are presented, respectively, in Figures

4 and 5. The results show some general characteristics, as well as some specific phonon behavior, for each configuration.

The spectra are sensitive to the changes of masses and elastic constants. The sensitivity of these results compares to

that observed for the vibration spectra at boundaries separating phase domains in fcc interface [21].

5. Conclusion

In conclusion, we present a theoretical model to calculate the scattering properties of phonons and coherent

transport via A/B/A bcc sandwich system. The purpose is to give an understanding of the relation between the coherent

phonon transmission via nanojunction zones and its symmetry properties. The sandwiched thin film is considered to

act as elastic joints between two similar groups of bcc semi-infinite lattices, with elastic interactions. It enables one to

address questions regarding the mechanical properties of the nanojunction zones in bcc systems. The chosen model is a

generic one and it serves to demonstrate the ability of the proposed modeling and analysis tools.

The analysis of the vibration spectra demonstrates the central role of a number of layers of the sandwiched film

for the dynamics of the sandwich system. The model is suitable for the study of such a configuration of atomic sandwich

systems constructed in an analogous manner on the classical macroscopic scale. The formalism presented is independent

of the configuration of the interface of the system, which makes it easy to extend them to study of a variety of problems.
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