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Abstract

The ultrasonic properties in the hexagonal structured lanthanide metals Ti, Zr and Hf have been studied

at room temperature. The higher order elastic constants have been calculated for these metals using Lennard-

Jones Potential for evaluating orientation-dependent ultrasonic properties. An anomalous behaviour in

orientation dependent velocity is obtained, which is due to the combined effect of second order elastic

constants and density. The achieved ultrasonic properties are compared with known physical parameters to

differentiate them from third group nitrides/laves phase compounds.
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1. Introduction

At room temperature and ambient pressure, the stable crystalline state of the early transition metals
Ti, Zr and Hf is a hexagonal closed packed (hcp) structure. The lanthanides are used as catalyst to speed up
chemical reactions, refining agent for the conversion of crude oil into gasoline, kerosene and diesel. They are
also used as phosphors, such as in colour television sets. Other lanthanide compounds are used in streetlights,
searchlights, and in the high-intensity lighting present in sports stadiums.

At high temperature, all these three metals undergo a phase transformation into a body-centered cubic
(bcc) structure. The crystal structures of these metals and their phase transformation under effect of pressure

have been studied by Xia et.al. [1].The electronic structure and properties of these transition metals have been
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studied by some methods of energy band theory [2]. You-qing et al. have described the electronic structure and

properties of these metals via one-atom theory [2]. The XRD and TEM study explore that the alloy of these

transition metals with platinum forms the solid solution at nanoscale [3]. The hydrogen storing property of

Ti/Zr-Hf quasi-crystal has been explained by Kelton and co-workers [4]. The elastic behaviour of Ti, Zr and Hf
has been examined by the calculation through first principle. In ground state, the total energy of these metals
has minimum value for hcp structure in comparison to their fcc/bcc structure, thus they possess hcp structure

in ground state [5].

Ultrasound is one of several effective methods used in the field of non-destructive testing (NDT) and
inspection. Non-destructive ultrasonic techniques are used to study physical properties of the materials through
the process of evaluating and measuring the ultrasonic attenuation. Ultrasonic attenuation is very important
physical parameter to characterize the material, which is well related to several physical quantities, such as
thermal conductivity, specific heat, thermal energy density and higher order elastic constants. Ultrasonic char-
acterization of XCr2 (X = {Ti, Zr and Hf}) can be found in the literature [6]. In the present investigation,
the ultrasonic properties of hexagonal structured lanthanide metals have been characterized at room tempera-
ture. The ultrasonic attenuation coefficient, acoustic coupling constants, higher order elastic constants, thermal
relaxation time and ultrasonic wave velocities for these metals for each direction of propagation of wave are
calculated temperature at 300 K. The obtained results are analyzed in comparison to other hexagonal structured
materials.

2. Theory

2.1. Higher order elastic constants

The elastic energy density U is a function of the strain components

U = F (εxx; εyy; εzz; εyz; εzx; εxy) = F (ε1; ε2; ε3; ε4; ε5; ε6) (1)

where ε ij(i or j = x, y, z) are components of the strain tensor. The second (CIJ) and third (CIJK) order

elastic constants of material are defined by expressions

CIJ =
∂2U

∂εI∂εJ
; I or J = 1, . . . , 6 (2)

CIJK =
∂3U

∂εI∂εJ∂εK
; I or J or K = 1, . . . , 6 (3)

The elastic energy density is well related to interaction potential φ(r) between atoms. Let the interaction
potential be the Lennard-Jones Potential or many body interaction potential, which is formulated as

Φ(r) = − a0

rm
+

b0

rn
, (4)

where a0 , b0 are constants and m , n are integers. The definition of higher order elastic constants, as expressed
in equations (2) and (3), with potential (4) under equilibrium and symmetric condition, leads six second and
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ten third order elastic constants (SOEC and TOEC) for the hexagonal closed packed structured materials [7,

8]:

C11 = 24.1p4C ′C12 = 5.918p4C ′

C13 = 1.925p6C ′C33 = 3.464p8C ′

C44 = 2.309p4C ′C66 = 9.851p4C ′

⎫⎪⎪⎬
⎪⎪⎭

(5a)

C111 = 126.9p2B + 8.853p4C ′C112 = 19.168p2B − 1.61p4C ′

C113 = 1.924p4B + 1.155p6C ′C123 = 1.617p4B − 1.155p6C ′

C133 = 3.695p6BC155 = 1.539p4B

C144 = 2.309p4BC344 = 3.464p6B

C222 = 101.039p2B + 9.007p4C ′C333 = 5.196p8B,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5b)

where p = c/a is the axial ratio; C ′ = χa/p5 ; B = ψa3/p3 ; and the rest second and third order elastic
constants have zero value, because under 180◦ rotation they have equal and opposite value for the same stress.
The harmonic and anharmonic parameters (χ and ψ) can be calculated using one experimental SOEC [7, 8].
In the present study, we have expanded the theory for theoretical evaluation of parameters χ and ψ . The
potential energy can be expanded in the powers of changes in the squares of distances. The expansion up to
cubic term can be written as

Φ = Φ0 + χ

2∑
i=1

[
Δr2

i

]2
+ ψ

2∑
i=1

[
Δr2

i

]3
(6)

According to the equation (6), χ and ψ can be written as

χ =
1
2!

[
d2Φ(r)
d(r2)2

]
(7)

ψ =
1
3!

[
d3Φ(r)
d(r2)3

]
(8)

In solving equations (7) and (8) for hexagonal closed packed structured materials, we have the relations

χ = (1/8)[{nb0(n − m)}/{an+4}] (9)

ψ = −χ/{6a2(m + n + 6)}. (10)

Parameters χ and ψ can be calculated using equations (9) and (10) with appropriate values of m , n and b0

so that the calculated values of elastic constants justify the experimental data.

2.2. Ultrasonic attenuation and allied parameters

Predominant cause for ultrasonic attenuation in a solid at room temperature is phonon-phonon interaction
(Akhieser loss) and thermoelastic relaxation mechanisms. The ultrasonic attenuation coefficient (A)Akh due to

phonon-phonon interaction and thermoelastic relaxation mechanisms is given by the expressions [7, 8]

(A/f2)Akh = 4π2
(
3E0 < (γj

i )2 > − < γj
i >2 CV T

)
τ/2ρV 3 (11)
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(A/f2)Th = 4π2 < γj
i >2 kT/2ρV 5

L , (12)

where f denotes frequency of the ultrasonic wave; V is the ultrasonic velocity for longitudinal and shear waves;

VL is longitudinal ultrasonic velocity; E0 is thermal energy density; and γj
i denotes Grüneisen number (i , j

are the mode and direction of propagation, respectively).

The Grüneisen number for hexagonal structured crystal along <001> orientation or θ = 00 is a direct

consequence of second and third order elastic constants. The relation D = 3
(
3E0 < (γj

i )2 > − < γj
i >2 CV T

)
/E0

is known as acoustic coupling constant, which is the measure of acoustic energy converted to thermal energy.
When the ultrasonic wave propagates through crystalline material, the equilibrium of phonon distribution is
disturbed. The time for re-establishment of equilibrium of the thermal phonon distribution is called the thermal
relaxation time τ and is given by the expression

τ = τS = τL/2 = 3k/CV V 2
D (13)

Here τL and τS are the thermal relaxation time for longitudinal and shear wave. k and CV denote the thermal
conductivity and specific heat per unit volume of the material, respectively. The Debye average velocity VD is
well-related to longitudinal (VL) and shear wave (VS1 , VS2) velocities. The expressions for ultrasonic velocities

are [7, 8]

V 2
L = {C33cos2θ + C11sin2θ + C44 + {[C11sin2θ − C33cos2θ + C44(cos2θ − sin2θ)]2

+4 cos2θsin2θ(C13 + C44)2}1/2}/2ρ
(14)

V 2
S1 = {C33cos2θ + C11sin2θ + C44 − {[C11sin2θ − C33cos2θ + C44(cos2θ − sin2θ)]2

+4 cos2θsin2θ(C13 + C44)2}1/2}/2ρ
(15)

V 2
S2 = {C44cos2θ + C66sin2θ}/ρ (16)

VD =
{

1
3

(
1

V 3
L

+
1

V 3
S1

+
1

V 3
S2

)}−1/3

, (17)

where ρ and θ are the density of the material and angle with the unique axis of the crystal, respectively. The
above formulations have been used for the calculation of ultrasonic attenuation and allied parameters in the
chosen lanthanide metals.

3. Results and discussion

3.1. Higher order elastic constants

The unit cell parameters a (basal plane parameter) and p (axial ratio) for Ti, Zr and Hf are 2.95 Å, 3.23

Å, 3.19 Å and 1.586, 1.594, 1.583, respectively. The value of m and n for chosen metals are 6 and 7. The values

of b0 are 0.875×10−64 erg cm7 , 1.79×10−64 and 1.93×10−64 for Ti, Zr and Hf respectively. The second and
third order elastic constants have been calculated for lanthanide metals using equation (5) and are presented in
Table 1.
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Table 1. Second and third order elastic constants of lanthanide metals at 300 K, in units of ×1010 Nm−2 .

SOEC Ti Zr Hf TOEC Ti Zr Hf
C11 23.308 19.159 23.561 C111 −380.086 −312.419 −384.208
C12 5.724 4.705 5.786 C112 −60.262 −49.533 −60.915
C13 4.683 3.888 4.716 C113 −12.012 −9.973 −12.097
C33 21.197 17.778 21.266 C123 −15.267. −12.676 −15.374
C44 5.617 4.664 5.657 C133 −71.602 −60.050 −71.832
C66 9.141 7.513 9.240 C344 −67.125 −56.296 −67.341
B 10.85 8.98 10.93 C144 −17.788 −14.769 −17.913
[5] 11.20 9.50 10.90 C155 −11.856 −9.844 −11.939
[9] 10.84 8.98 10.90 C222 −330.734 −247.194 −303.996
[10] 10.60 9.50 10.80 C333 −253.270 −214.560 −253.125
[11] 10.51 8.33 10.90

The elastic constants are important, since they are related to hardness and are used for the determi-
nation of the ultrasonic attenuation. The bulk moduli of chosen metals are evaluated using the second order
elastic constants. It is obvious from Table 1 that there is good agreement between the present and reported
theoretical/experimental bulk moduli [5, 9–11]. Hence applied theory for the evaluation of higher order elastic
constants at room temperature is justified. The second order elastic constants for Zr lies in between Ti and Hf
because the total lattice energy of Zr lies between them [5]. It is observed that the higher order elastic constants

of these metals are comparable to Laves phase compounds [6].

3.2. Ultrasonic velocity and allied parameters

The density ρ and thermal conductivity k at room temperature have been taken from the literature [9].
The value of specific heat per unit volume CV and thermal energy density E0 are evaluated using tables of
physical constants and Debye temperature. The quantities k ρ, Cv and E0 and calculated acoustic coupling
constants DL and DS are shown in Table 2.

Table 2. Density ρ , specific heat per unit volume CV , thermal energy density E0 , thermal conductivity k and acoustic

coupling constants DL and DS of the covered lanthanide metals.

Ti Zr Hf
ρ (×103 kgm−3) 4.54 6.51 13.31

CV (×106 Jm−3K−1) 1.995 1.642 1.776
E0 (×108 Jm−3) 3.272 3.174 3.373
k (Wm−1K−1) 21.9 22.7 23.0

DL 55.965 56.314 56.521
DS 1.406 1.249 1.418

The calculated orientation dependent ultrasonic wave velocities and Debye average velocities at 300
K are shown in Figures 1–4. Figures 1–3 show that the velocities VL and VS1 have minima and maxima
respectively at 45◦ with the unique axis of the crystal while VS2 increases with the angle from the unique axis.
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The combined effect of second order elastic constants and density is reason for abnormal behaviour of angle
dependent velocities.
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Figure 1. VL versus angle (in degrees) with respect to

the unique axis of the crystal.

Figure 2. VS1 versus angle (in degrees) with respect to

the unique axis of the crystal.
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Figure 3. VS2 versus angle (in degrees) with respect to

the unique axis of the crystal.

Figure 4. VD versus angle (in degrees) with respect to

the unique axis of the crystal.

The nature of the angle dependent velocity curves in the present work is found similar to that for Laves
phase compounds and hexagonal wurtzite structured materials (GaN, AlN, InN, CdS and CdSe) [6, 12–14].
Thus the computed velocities for these lanthanide metals are justified.

Debye average velocities VD of these metals are increasing with the angle and have maxima at 55◦ at 300
K (Figure. 4). Since VD is calculated using VL , VS1 and VS2 [7, 8], the angle variation of VD is influenced by
the constituent ultrasonic velocities. The maximum VD at 55◦ is due to a significant increase in longitudinal and

28



YADAWA, PANDEY, SINGH, YADAV, MISHRA

pure shear (VS2) wave velocities and a decrease in quasi-shear (VS1) wave velocity. Thus it can be concluded
that the average sound wave velocity is maximum for a sound wave traveling at 55◦ with respect to the unique
axis of these crystals.
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Figure 5. Relaxation time versus angle (in degrees) with respect to the unique axis of the crystal.

The calculated thermal relaxation time is visualized in Figure 5. The angle dependent thermal relaxation

time curves follow the reciprocal nature of VD asτ ∝ V −2
D . τ has maximum values 2.18 ps, 4.73 ps and 7.48

ps for the wave propagation along unique axis ( θ = 00) of metals Ti, Zr and Hf, respectively. The minimum
values of τ for Ti, Zr and Hf are found to be 1.59 ps, 3.5 ps and 5.45 ps, respectively, along θ = 55◦ . The
order of τ for hexagonal structured materials is in picoseconds [12]. Hence the calculated τ justifies the hcp
structure of chosen metals at room temperature. The minimum thermal relaxation time for wave propagation
along θ = 55◦ implies that the re-establishment time for the equilibrium distribution of thermal phonons will
be minimum for propagation of wave along this direction.

3.3. Ultrasonic attenuation

In the evaluation of ultrasonic attenuation, it is supposed wave propagation occurs along the unique axis

(<001> direction) of the lanthanide metals. The attenuation coefficient over frequency square (A/f 2)Akh , for

longitudinal (A/f 2)L and shear wave (A/f2)S are calculated using equation (11) under the condition ωτ <<

1, at room temperature. The thermoelastic loss over frequency square, (A/f 2)Th , is calculated with equation

(5). The values of (A/f2)L , (A/f 2)S , (A/f 2)Th and total attenuation (A/f 2)Total are given in Table 3.

Table 3. Ultrasonic attenuation coefficient (in ×10−17 Nps2m−1) of lanthanide metals.

Ti Zr Hf
(A/f 2)Th 0.091 0.253 0.475
(A/f 2)L 72.400 239.339 488.050
(A/f 2)s 6.666 19.746 44.617

(A/f 2)Total 79.157 259.338 533.142

29



YADAWA, PANDEY, SINGH, YADAV, MISHRA

Table 3 indicates that the thermoelastic loss is very small in comparison to Akhieser loss and ultrasonic

attenuation for longitudinal wave (A/f2)L is greater than that of shear wave (A/f 2)S . This reveals that
ultrasonic attenuation due to phonon-phonon interaction along longitudinal wave is the factor governing total

attenuation ((A/f 2)Total = (A/f 2)Th +(A/f 2)L +(A/f 2)S). The total attenuation is mainly affected by
thermal conductivity and acoustic coupling constants. The total attenuation of these transition metals are larger

than group III nitrides (AlN: 4.441×10−17 Nps2 m−1 ; GaN: 14.930×10−17 Nps2 m−1 and InN: 20.539×10−17

Nps2 m−1) due to their large thermal conductivity and acoustic coupling constants [6, 12]. This implies that the
interaction between acoustical phonon and quanta of lattice vibration for these metals is large in comparison to

group III nitrides. The density of states at the Fermi energy (in states eV−1 atom−1) for Ti, Zr and Hf are 0.90,

0.87 and 0.68, respectively [5]. The values of total ultrasonic attenuation for the present investigated metals

Ti, Zr and Hf are found 79.157×10−17 Nps2 m−1 , 259.338×10−17 Nps2 m−1 and 533.142×10−17 Nps2 m−1

respectively (Table 3). Hence, the ultrasonic attenuation has reciprocal nature to the density of states for these

metals. At room temperature and zero pressure, the Ti metal is quite stable in hcp structure [5]. The minimum
ultrasonic attenuation for Ti justifies its quite stable hcp structure state.

4. Conclusion

The above discussion reveals that:

• Our theory of higher order elastic constants is justified for hexagonal structured lanthanide metals.

• The higher order elastic constants, bulk modulus and velocity have low values for these metals in com-
parison to group III nitrides.

• The order of thermal relaxation time for these metals is found on the order of picoseconds, which justifies
their hcp structure at 300 K. The re-establishment time for the equilibrium distribution of thermal phonons
will be minimum for the wave propagation along θ = 55◦ due to being smallest value of τ along this
direction.

• The acoustic coupling constants of these metals for longitudinal wave are found five times larger than GaN
/AlN /InN. Hence the conversion of acoustic energy into thermal energy will be large for these metals.

• The dominant mechanism for ultrasonic attenuation in these metals is phonon-phonon interaction. The
thermal conductivity and acoustic coupling constant are the governing factors to the total attenuation.
The density of states at Fermi energy of these metals can be understood with the knowledge of total
ultrasonic attenuation.

• The mechanical properties of these metals will not be better than the group III nitrides due to their low
ultrasonic velocity, second order elastic constants and high ultrasonic attenuation.

These results, together with other well-known physical properties, may expand future prospects for the appli-
cation and study of lanthanides and their compounds.
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