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Abstract

Based on the dielectric continuum model and Loudon’s uniaxial crystal model, the interface-optical-

propagating (IO-PR) mixing phonon states of a quasi-zero-dimensional (Q0D) wurtzite cylindrical quantum

dot (QD) are investigated. It is found that there are two types of IO-PR mixing phonon modes, i.e. ρ -

IO/z -PR mixing modes and the z -IO/ρ -PR mixing modes coexisting in Q0D wurtzite QDs. Numerical

calculation on a wurtzite ZnO QD shows that the dispersion frequencies of the mixing modes are discrete

functions of the azimuthal quantum number and axial wave-number. The calculated results agree well

with the recent experimental spectra in ZnO QDs. An abnormal electron-phonon coupling strength is

observed with the increase of the azimuthal quantum number and the order of phonon modes, which is

attributed to the modulation effect of anisotropic dielectric functions of wurtzite ZnO crystal. The analytical

Frölich-like Hamiltonian of electron-phonon interaction obtained here is quite useful for further analyzing

phonon influence on optoelectronics properties of wurtzite Q0D QD structures. The present results can be

reduced naturally to those of wurtzite quantum wires or quantum wells as the height or radius of cylindrical

QD approaches infinity. This supports the validity and unity of phonon modes theories in wurtzite low-

dimensional quantum systems.
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1. Introduction

Currently, there has been a great deal of interest in investigations of zinc oxide (ZnO) semiconductors

[1, 2], which mainly can be concluded into the following four unique features and advantages of ZnO materials:

wide direct bandgap (∼3.3 eV at 300 K) that has huge potential for electronic, optoelectronic and optical appli-
cations; semiconducting, piezoelectric and pyroelectric properties which result in ZnO being an ideal candidate
for fabricating electromechanical coupling devices; biodegradable and possibly biocompatible characteristics
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that is suitable for medical and biological applications; various nanostructures, such as dots, wires and belts as
well as nanoring, etc., easily formed by a chemical approach or physical method, which leads to a potentially
lower cost for ZnO-based devices and equipment. In addition, semiconductor quantum dots (QDs) are nanos-

tructures where the three-dimensional confinement of carriers results in a discrete energy spectrum [3, 4, 5],
which can further improve the performance of optoelectronic devices, such as low-threshold lasers and light
polarization insensitive detectors. Meanwhile, with the technique advancements in crystal growing, such as
metal-organic chemical vapor deposition, the molecular-beam epitaxy and hydride vapor phase epitaxy, ZnO
QDs can be fabricated in experiments [5, 6, 7, 8], and it provides explicit and important research object of ZnO
nanostructures. Hence investigation of various physical properties in ZnO QD structures has become a hot topic
both in theories and experiments during the last decade [1–8].

Though bound electronic states, donor and acceptor impurity states, excitonic states, as well as electron
spin dynamics in the quasi-0-dimensional (Q0D) ZnO QD have been widely investigated [7, 8, 9, 10, 11], the polar
optical phonon states and their coupling properties with electrons in the system have not been fully understood.
The phenomena of phonon replicas in the emission spectra, the homogeneous broadening of excitonic line width
and the relaxations of hot carriers to the fundamental band edge are directly relative to the lattice vibration of
semiconductor materials [12]. Theories and experiments reveal that not only the carriers, but also the lattice

vibrations (phonon modes) are influenced greatly by the heterostructures of low-dimensional quantum systems

[13, 14, 15]. Moreover, phonon modes have quite important influence on the optoelectronics and electronics

properties of low-dimensional quantum structures [16, 17, 18, 19]. Hence it is necessary to study the phonon
modes in ZnO QD structures.

It is well known that ZnO materials usually crystallize in the hexagonal wurtzite structure, whose
physical properties behavior anisotropic in space. In contrast to the zinc-blende GaAs-based confined structures
[15, 20, 21, 22, 23], the phonon modes in wurtzite quasi-2-dimensional (Q2D) quantum well (QW) and quasi-

1-dimensional (Q1D) quantum wire (QWR) systems are more complicated [24, 25, 26, 27, 28, 29, 30, 31, 32].
Due to the complexity of phonon modes in the wurtzite QD structures originated from the high confined
dimensionality and anisotropic wurtzite crystal-structure, the optical phonon modes in the ZnO QDs have
rarely been studied and not fully been understood [33, 34, 35, 36, 37, 38, 39]. Rajalakshmi et al. [33] and

Lin et al. [34] experimentally studied the properties of optical phonon confinement in ZnO QDs by using
the Raman spectroscopy, and an obviously confined behavior of optical phonon modes was observed. Based
on a dielectric continuum model (DCM) and Raman spectrometry technique, Chassaing and cooperators [35]

analyzed theoretically and experimentally the surface optical (SO) phonon modes of a ZnO QDs. In fact, an

infinite height QWR and an infinite radius quantum disk (also QW) were assumed in their theoretical analysis.
The same group also investigated the acoustic phonons in ZnO nanoparticles, in addition to the usual breathing
and fundamental extensional modes, a new extensional mode of ZnO nanoparticles was found [36]. Based on

the x-ray absorption, photoluminescence and Raman spectroscopy technique, the groups of Cheng [37] and

Hsu [38] studied the size-effect on the properties of electron-longitudinal-optical (LO)-phonon and exciton-LO
phonon interactions in wurtzite ZnO QDs. The two groups drew the similar conclusion that the strengths of the
electron (exciton)-phonon coupling increase as the sizes of ZnO QD increase. Fonoberov et al. [39] investigated

interface optical (IO) and confined optical phonons in wurtzite spherical ZnO QDs. Recently, we [40] extended
the works of polar optical phonon modes to the wurtzite nitride cylindrical QDs structures based on the DCM
and Loudon’s uniaxial crystal model [41]. However, up to now, the polar optical phonon modes in wurtzite
cylindrical ZnO QD structures have not been fully studied and understood. Moreover, the geometrical shapes
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and symmetries of realistic QDs maybe spherical-caps, spheroids, hexagonal pyramids and cylindroid structures
[4, 5, 6, 7, 8, 35, 37, 39], which strongly depend on material natures and growing conditions. For simplicity, we
investigate the polar optical phonon modes in a cylindrical ZnO QDs in the present paper.

The main accomplishments and significance of this work can be summarized into four points as follows. (i)
The dispersive equation and the Fröhlich-like electron-phonon interaction Hamiltonian for one type of important
optical phonon modes, i.e. the IO-propagating (PR) phonon mixing modes in wurtzite QDs are given. The

analytical results obtained here are quite useful for further analyzing the phonon dispersion spectra [35] and

polaronic effect [15, 16, 17, 18, 19] in the Q0D wurtzite QD structures. (ii) Numerical calculation on a wurtzite
ZnO QD is performed. It is found that the dispersion frequencies of the mixing phonon modes are discrete
functions of the azimuthal quantum number and axial wave-number of the cylindrical QD systems, and the
calculated results agree well with the recent experimental observation [35]. (iii) Via the numerical discussion
of the electron-phonon coupling functions, an abnormal electron-phonon coupling strength is observed, which
is attributed to the modulation effect of anisotropic dielectric functions in wurtzite ZnO crystal. (iv) The

present theoretical results can be reduced naturally to those of wurtzite Q1D QWRs [19, 29, 30] (Q2D QWs

[24, 25, 26, 27, 28]) as the height (radius) of the cylindrical QD approaches infinity. This further supports the
validity and unity of phonon modes theories in wurtzite low-dimensional quantum systems.

2. Theory

Let us consider a freestanding wurtzite cylindrical QD structure with radius R and height 2d along the
z -direction. The z -axis is taken to be along the direction of the c-axis of the wurtzite material and denote the
radial- (axial-) direction as t (z ). Thus, under the cylindrical coordinate, the heterointerfaces of the wurtzite
QD in z -direction are located at z = ±d , and in radius-heterointerface is at ρ = R . Via solving the Laplace
equation based on Loudon’s uniaxial crystal model [41], it can be confirmed that there are four types of polar

mixing phonon modes in wurtzite cylindrical QD structures [40]. As the first step of solving the complicated
mixing optical phonon modes in wurtzite QDs, we will pay attention to the IO-PR mixing phonon modes only
in the next text.

The IO-PR mixing mode is a mode which behaves as IO mode in t(z )-direction, and shows as PR mode

in z (t)-direction. Considering the exchange of t- and z -directions, it is found that the IO-PR mixing modes

also have two forms, i.e. the z−IO/ρ−PR and ρ−IO/z−PR mixing modes. Under cylindrical coordinates,

the electrostatic potential functions of z−IO/ρ−PR mixing modes are given by

Φz−IO/ρ−PR
m (r) = eimϕfPR(ρ)φIO(z),

fPR(ρ) =
{

a1Jm(kt1ρ) ρ � R

a2Jm(kt2ρ) + a3Ym(kt2ρ) ρ > R,

φIO(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎨⎩
b1 exp(kz2z) z < −d

b2 sinh(kz1z) |z| � d

−b1 exp(−kz2z) z > d,

AS

⎧⎨⎩
b1 exp(kz2z) z < −d

b2 cosh(kz1z) |z| � d

b1 exp(−kz2z) z > d.

S

(1)
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For the ρ−IO/z−PR mixing modes, their electrostatic potentials can be written as

Φρ−IO/z−PR
m (r) = eimϕf IO(ρ)φPR(z),

f IO(ρ) =
{

a1Im(kt1ρ) ρ � R

a2Km(kt2ρ) ρ > R,

φPR(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎨⎩
b1 exp(ikz2z) z < −d

b2 sin(kz1z) |z| � d

−b1 exp(ikz2z) z > d,

AS

⎧⎨⎩
b1 exp(ikz2z) z < −d

b3 cos(kz1z) |z| � d

b1 exp(ikz2z) z > d.

S

. (2)

In equation (1), Jm(x) and Ym(x) are the Bessel and Neumann functions of m-order, respectively. In equation

(2), Km(x) and Im(x) are the first- and second-kind modified Bessel functions of order m , respectively. And

ai and bi are coupling coefficients of phonon modes determining by additional boundary conditions (BCs). The

symbols “AS” and “S” in equations (1) and (2) denote the antisymmetrical solution and symmetrical solution,
respectively. This treatment completely satisfies the symmetry demand of the phonon potential in z -direction.

According to the relationship of Loudon’s uniaxial crystal model [41] and the Laplace equation in the areas

of the inner and outer QD [40], the dependent relations of the phonon wave-numbers kuv (u = t, z; v = 1, 2)
can be chosen as √

εti(ω)kti ±
√

εzi(ω)kzi = 0,√
εz1(ω)kz1 ±

√
εz2(ω)kz2 = 0, (3)

where

εt(ω) = ε∞t
ω2 − ω2

t,L

ω2 − ω2
t,T

, εz(ω) = ε∞z
ω2 − ω2

z,L

ω2 − ω2
z,T

. (4)

Here, ωz,L , ωz,T , ωt,L and ωt,T are the zone center characteristic frequencies of A1 (LO), A1 (TO), E1 (LO),

and E1 (TO) modes, respectively. It should be noted that subscripts 1 and 2 in equations (1), (2) and (3)
correspond to the ZnO material and vacuum dielectric environment, respectively.

The reasonableness of equation (3) lies in the fact that the present theories in wurtzite Q0D QDs can
reduce naturally to the corresponding results of wurtzite Q1D QWR and Q2D QW structures under a certain
condition, which will be discussed in detail later.

By using the continuity BCs of the potential functions and the electric displacement vector at the axial
interfaces z = ±d and the radial interface ρ = R , one can get the following two equations for the ρ−IO/z−PR

mixing modes, [29, 31]:

kz1 = nπ/2d, n = ±1,±2, ... (5)

and

εt,1kt1Km(kt2R)[Im−1(kt1R) + Im+1(kt1R)]

+εt2kt2Im(kt1R)[Km−1(kt2R) + Km+1(kt2R)] = 0. (6)
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Connecting equations (3), (5) and (6), the dispersive frequencies of ρ−IO/z−PR mixing modes can be worked
out. In the same way, via the continuity BCs of the potential functions and the electric displacement vector at
the axial interfaces z = ±d and the radial interface ρ = R , one can obtain another two dispersive equations
(7) and (8) for the z−IO/ρ−PR mixing modes [26, 32]. They are given by

kz1 =
{

arctan h
√

−εz2/εz1/d, S
arctan h

√
−εz1/εz2/d, AS

(7)

and

{kt2εt,2Jm(kt1R)[Jm−1(kt2R) − Jm+1(kt2R)]

+kt1εt,1Jm(kt2R)[Jm+1(kt1R) − Jm−1(kt1R)]}Ym(kt2L)

−Jm(kt2L){kt1εt,1[Jm+1(kt1R) − Jm−1(kt1R)]Ym(kt2R)

+kt2εt,2[Ym+1(kt2R) − Ym−1(kt2R)]Jm(kt1R)} = 0. (8)

In the same way, “S” and “AS” in equation (7) also denote the symmetric and antisymmetric z−IO/ρ−PR

mixing modes. In equation (8), L is the maximum radial size of the nonpolar dielectric environment (in general,

L � R). The dispersive frequencies and properties of the z−IO/ρ−PR mixing modes in ZnO QDs can be

obtained by solving the equations (7) and (8) numerically.

Next we deduce the expressions of the free phonon field Hamiltonian and electron-phonon interaction
Hamiltonian. To this end, we first institute the orthonormality relationships of polarization vector of IO-PR
mixing phonon modes. Based on the formula P = (1 − ε)/4π∇Φ(r), one can get the polarization vector

PIO−PR
m (r) of IO-PR mixing phonon modes. For the symmetrical and antisymmetrical z−IO/ρ−PR mixing

modes, the polarization vectors Pz−IO/ρ−PR
m (r) are respectively given by

Pz−IO/ρ−PR
S,m (r) =

A0

4π
eimϕ

{
1
2
ΦIO

S (z)(1 − εt1)kt1[Jm−1(kt1ρ) − Jm+1(kt1ρ)]ρ̂ (9)

+ fPR(ρ)ΦIO
S (z)

im
ρ

(1 − εt1)ϕ̂ + fPR(ρ)kz1(1 − εz1)b2 sinh(kz1z)ẑ
}

,

and

Pz−IO/ρ−PR
AS,m (r) =

A0

4π
eimϕ

{
1
2
ΦIO

AS(z)(1 − εt1)kt1[Jm−1(kt1ρ) − Jm+1(kt1ρ)]ρ̂ (10)

+ fPR(ρ)ΦIO
AS(z)

im
ρ

(1 − εt1)ϕ̂ + fPR(ρ)kz1(1 − εz1)b2 cosh(kz1z)ẑ
}

.

For the ρ−IO/z−PR mixing modes, the polarization vectors Pρ−IO/z−PR
m (r) of symmetrical and antisymmet-

rical ρ−IO/z−PR modes are unified as

Pρ−IO/z−PR
S/AS,m

(r) =
A0

4π
eimϕKm(kt2R)

{
1
2
ΦPR

S/AS(z)(1 − εt1)kt1[Im−1(kt1ρ)

+Im+1(kt1ρ)]ρ̂ + f IO(ρ)ΦPR
S/AS(z)

im
ρ

(1 − εt1)ϕ̂

+f IO(ρ)kz1(1 − εz1)[b2 cos(kz1z) − b3 sin(kz1z)]ẑ
}

. (11)
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It should be noted that equations (9)–(11) just give the polarization vectors PIO−PR
m (r) within the ZnO QD

region, and the polarization outside of the QD is null due to the nonpolar vacuum dielectric matrix (εd = 1).

By making use of the orthonormality condition of polarization vectors PIO−PR
m (r), the normalization

constants A0 in equation (3) are obtained:

|A0|2 =

{
e−2kz2d

cosh2(kz1d)

∫
ρdρdz{ω2

pt

ηt
(1 − εt1)2k2

t1 cosh2(kz1z) (12)

× [J2
m−1(kt1ρ) + J2

m+1(kt1ρ)] + 2
ω2

pz

ηz
(1 − εz1)2k2

z1 sinh2(kz1z)J2
m(kt1ρ)}

}−1

for symmetrical z−IO/ρ−PR mixing modes,

|A0|2 =

{
e−2kz2d

sinh2(kz1d)

∫
ρdρdz{ω2

pt

ηt
(1 − εt1)2k2

t1 sinh2(kz1z) (13)

× [J2
m−1(kt1ρ) + J2

m+1(kt1ρ)] + 2
ω2

pz

ηz
(1 − εz1)2k2

z1 cosh2(kz1z)J2
m(kt1ρ)}

}−1

for antisymmetrical z−IO/ρ−PR mixing modes, and

|A0|2 =
{

K2
m(kt2R)

∫
ρdρdz{|B2 cos(kz1z) + B3 sin(kz1z)|2

×ω2
pt

ηt
(1 − εt1)2k2

t1[I
2
m−1(kt1ρ) + I2

m+1(kt1ρ)] (14)

+2I2
m(kt1ρ)

ω2
pz

ηz
(1 − εz1)2k2

z1 |B2 sin(kz1z) + B3 cos(kz1z)|2}
}−1

for the symmetrical and antisymmetrical ρ−IO/z−PR mixing phonon modes. “ηυv ” in equations (12)–(14) is
defined as

η1/2
υv = [1 + αvn

∗(4πω2
0v/ω2

pv − 4πω2
0/ω2

pv)]
−1, (ν = i, j; v = t, z), (15)

where ωpv is the ionic plasma frequency. In equation (14), the coupling coefficients Bi (i = 2, 3) are defined

in the Appendix. In terms of the complete set of orthonormal polarization vector PIO−PR
v,m , we can obtain the

free phonon Hamiltonian operators for the IO-PR mixing modes, i.e.

HIO−PR =
∑

m,kz1

�ω

[
b†m(kz1)bm(kz1) +

1
2

]
. (16)

The symbols b†m(kz1) and bm(kz1) are m-th mode creation and annihilation operators for the IO-PR phonons.
They satisfy the commutative rules for bosons.

The interaction Hamiltonian of electron with the IO-PR mixing phonon field is read as He−IO/PR =

−eΦIO−PR(r). Via expanding ΦIO−PR(r) in terms of the normal modes obtained above, and after some trivial
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algorithms, we get the electron-phonon interaction Hamiltonian as

He−IO/PR = −e
∑

m,kz1

(
�

8πω

)1/2

ΦIO−PR
m (r)[b†m(kz1) + bm(kz1)]

= −
∑

m,kz1

ΓIO−PR
m,kz1

(ρ)ΓIO−PR
m,kz1

(z)[bm(kz1)eimϕ + H.c.], (17)

where ΓIO−PR
m,kz1

(ρ) and ΓIO−PR
m,kz1

(z) are the coupling functions defined as

ΓIO−PR
m,kz1

(ρ) =
√

|A0|
(

�e2

ω

)1/4

f IO,PR(ρ),

ΓIO−PR
m,kz1

(z) =
√

|A0|
(

�e2

ω

)1/4

φIO,PR(z), (18)

where the functions f IO,PR(ρ) and φIO,PR(z) are defined in equations (1) and (2).

3. Numerical results and discussion

In order to get a clear picture for the dispersive properties of IO-PR mixing phonon modes and their
coupling behaviors with electrons in Q0D wurtzite QD system, a numerical calculation is performed on a
wurtzite ZnO cylindrical QD. The height 2d and the radius R of the cylindrical QD structure are chosen as
2d = R = 2aB , respectively. (aB is the effective Bohr radius of the wurtzite ZnO bulk material, which is

approximately 2.1 nm). The physical parameters of the materials used in our calculation are listed in Table 1.

Table 1. Zone-center energies (in cm−1 ) of polar optical phonons, dielectric constants of wurtzite ZnO material and

dielectric matrix [1, 26].

ωtT ωtL ωzT ωzL εz∞ εt∞ εz0 εt0 εd

380 579 413 591 3.78 3.7 8.91 7.77 1

Let us first investigate the dispersive properties of the IO-PR mixing phonon modes. Figure 1 plots the
dispersive frequencies ω of the ρ−IO/z−PR mixing modes as a function of the z -direction wave-number kz1 .
The first six azimuthal quantum numbers m = 0, 1, ..., 5 are considered in the figure. From the figure, it is
found that the frequency range of ρ−IO/z−PR mixing modes is within the range of [ωtT1, ωzL1 ], which is

consistent with the frequency range analysis of mixing phonon modes in Q0D wurtzite QDs [40]. It is observed

that the dispersive frequencies ω of the ρ−IO/z−PR mixing phonon modes are the discrete functions of the
wave-number kz1 , which are quite similar to the energy levels of electronic states in Q0D QD structures. This is
the typical feature of confined phonon modes in Q0D QD systems [39, 42], and it is obviously different from the

dispersive characteristics of confined phonon modes in wurtzite Q2D QWs [24, 25, 26, 27, 28] and Q1D QWRs

structures [29, 30, 31, 32]. In wurtzite Q2D QWs (Q1D QWRs) systems, the dispersive frequencies of confined

phonon modes are always continuous functions of the plane (axial) wave-numbers due to their translational

symmetry [24, 25, 26, 27, 28, 29, 30, 31, 32]. But for the wurtzite cylindrical QDs, they have no translational
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symmetry. Thus the dispersive frequencies of phonon modes in wurtzite cylindrical QDs just take a series of
discrete values. Apart from the curves of m = 0, 1, each of the other curve has a minimum at a certain kz1 .
With increase of m , the dispersions of the IO-PR mixing phonon modes become weaker and weaker. We also
notice from Figure 1 that all the interval of adjacent kz1 for the ρ-IO/z -PR mixing phonon modes are equal,

which can be fully understood from the dispersion equation (5). As kz1 approaches ∞ , the value 542.8 cm−1

is the limiting frequency of the ρ-IO/z -PR mixing phonon modes. In fact, based on the relations [43]

lim
x→∞

Im(x) = ex/
√

2πx,

lim
x→∞

Km(x) = e−x√π/
√

2x, (19)

it is easy to prove that, as kz1 → ∞ , equation (6) will degenerate to the form of εt1 +1 = 0. This equation just

gives the limited frequency of 542.8 cm−1 . These are the general features of phonon modes in low-dimensional
quantum structures [24, 25, 26, 27, 28, 29, 30, 31, 32].

0          1         2          3         4          5         6          7          8
500

510

520

530

540

ω 
 (

cm
-1

)

k z1 (nm -1)

 m=0
 m=1
 m=2
 m=3
 m=4
 m=5

542.8 cm-1

Figure 1. Dispersive frequencies ω of the ρ−IO/z−PR mixing modes as a function of the z -direction wave-number

kz1 for six different azimuthal quantum numbers m = 0, 1, 2, ...,5.

Figure 2 depicts the dispersive frequencies ω of z -IO/ρ-PR mixing phonon modes as a function of kz1 .
Three different azimuthal quantum number m = 0, 1, 2 are chosen. It is observed clearly that there are two
branches of z -IO/ρ-PR mixing modes in ZnO cylindrical QDs. The high frequency branch (the upper branch) is

the antisymmetrical z -IO/ρ-PR mixing phonon mode, and the low frequency branch (the nether branch) is the

symmetrical z -IO/ρ-PR mixing mode. The first dot (n = 1) of the low-order symmetrical z -IO/ρ-PR mixing

mode with m = 0 is stressed by the symbol “× .” The frequency point of ω = 490 cm−1 is just consistent with
the recent experimental observation of interface optical phonon modes in ZnO QDs [35]. Due to the lowest-order

phonon mode (n = 1) and the spherical symmetry of phonon potential (m = 0), we suggest that the phonon

modes (ω=490 cm−1 ) observed in ZnO QDs experiments [35] are the symmetrical z -IO/ρ-PR mixing phonon

modes with m = 0. Same as the situation of ρ-IO/z -PR mixing phonon modes (Figure 1), the dispersive

frequencies of z -IO/ρ-PR mixing modes are also the discrete functions of kz1 . The dispersive frequencies of

the high (low) frequency z -IO/ρ-PR mixing modes are the monotonic and degressive (incremental) functions

130



ZHANG

of kz1 . As kz1 approaches infinity, the two branches of z -IO/ρ-PR mixing modes converge to the frequency of

558.5 cm−1 . This limiting value is determined by the relation εz1 + 1 = 0. In fact, with the aid of the limiting
relations of Bessel function and Neumann function (20) [43]

lim
x→∞

Jm(x) =

√
2

πx
cos

[
x − (m +

1
2
)
]

π

2
,

lim
x→∞

Ym(x) =

√
2

πx
sin

[
x − (m +

1
2
)
]

π

2
, (20)

as kz1 → ∞ , the equation (8) can reduce naturally to the form of εz1 + 1 = 0. This explains distinctly the

mathematic origin of the limiting frequency values of 558.5 cm−1 for very large wave-number kz1 . Moreover,
the equation εz1 + 1 = 0 also determines the dispersive frequency of z -direction IO phonon modes in wurtzite
planar heterostructure [24, 25, 26, 29, 30, 31]. From a physical viewpoint, the wave-lengths of phonon modes
become very short as kz → ∞ , thus the phonons cannot distinguish planar heterostructure and the curved
cylindrical heterostructure [44]. This directly results in the identical limiting frequency of phonon modes in

wurtzite planar heterostructure and QD systems for very large wave-numbers [24, 25, 26, 29, 30, 31]. Compared

the symmetrical z -IO/ρ-PR mixing modes with the antisymmetrical z -IO/ρ-PR mixing modes, it is found that
the dispersions of the symmetrical modes are more obvious than those of the antisymmetrical modes. As m is
fixing, the intervals of adjacent kz1 are unequal. The intervals decrease with the increase of kz1 , which differ
obviously from the cases of ρ-IO/z -PR mixing modes (refer to Figure 1). The larger the azimuthal quantum

number m , the smaller the adjacent intervals of kz1 become. We note that the antisymmetrical z -IO/ρ-PR

mixing modes occur at kz1 > 0.3 nm−1 , which is the typical reducing behaviors of confined phonon modes in
anisotropic wurtzite quantum structures. In fact, as ω is over than ωtL1 , the sign of εt1(ω)εz1(ω) will become
negative, thus the old IO-PR mixing phonon modes cannot exist in this situation, and they will reduce to the
other phonon modes, such as the half-space modes or quasi-confined modes [24, 25, 26, 27, 28, 29, 30, 31, 32].
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Figure 2. Dispersive frequencies ω of the z−IO/ρ−PR mixing modes as a function of kz1 for three different azimuthal

quantum numbers m = 0, 1, 2. The symbol “×” in the figure denotes the experiment frequency of interface optical

phonon modes in wurtzite ZnO QDs [35].
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On the other hand, it is found that the wave-number kz1 becomes continuous as d → ∞ from equations
(5) or (7). Under this condition, based on equation (3) one can get the relations:

kz1 = kz2 = kz,

kti =
√

εzi(ω)/εti(ω)kz. (21)

Substituting the two conditions of equation (21) into the equations (6) and (8), equation (6) will reduce to
the form of dispersive equation which is completely same as the dispersive equation of IO phonon modes in
Q1D wurtzite QWRs [31], and the equation (8) will reduce to the dispersive equation of the PR modes in Q1D

wurtzite QWRs [32]. This explains distinctly the fact, from a mathematical view of point, that the IO-PR
mixing phonon modes in Q0D wurtzite QDs reduce to the IO or PR phonon modes in Q1D wurtzite QWRs
under the condition of d → ∞ . From a pure physical viewpoint, as the height d approaches ∞ and the radius
R is kept at a finite value, the physical model of the wurtzite Q0D cylindrical QD structures will naturally
reduce to the wurtzite Q1D cylindrical QWR structures. In the same way, as the height d takes a certain value
and the radius R approaches infinity, via the limiting relations (20), the wave-number kti (i = 1, 2) will become

continual based on equations (6) or (8). From equations (3), one can get the relations

kt1 = kt2 = kt

kzi =
√

εti(ω)/εzi(ω)kt. (22)

Thus equation (7) [equation (5)] reduces to the dispersive equation of IO (PR) phonon modes in Q2D wurtzite

QWs. This mathematical result illustrates clearly that, when R → ∞ , the z -IO/ρ-PR mixing modes will reduce
to the IO and PR modes in Q2D wurtzite QWs. These are also natural results because the cylindrical QDs will
degenerate into Q2D QWs when the radius of the QDs approaches ∞ . This further proves the correctness and
reliability of the phonon modes theories in Q0D wurtzite QD systems established in the present work.

Next we discuss the characteristics of electron-phonon coupling functions in the wurtzite QDs. The

coupling functions ΓIO−PR
m,kz1

(z) and ΓIO−PR
m,kz1

(ρ) of electron with ρ-IO/z -PR mixing phonon modes as functions

of z and ρ are depicted in Figure 3 for the first two branches of ρ-IO/z -PR mixing modes (n = 1, 2) with

two azimuthal quantum numbers (m = 0, 1). Figures 3(a)–(c) display the coupling properties of electron-

(ρ-IO/z -PR) phonon interaction in z -direction, and Figure 3(d) presents those in t-direction. The solid

(dash) curves in Figures 3(a)–(c) correspond the antisymmetrical (symmetrical) electron-(ρ-IO/z -PR) phonons

coupling functions. And the curves in Figure 3(d) display the coupling properties of electron-(ρ-IO/z -PR)

phonons interaction in t-direction with different phonon branches (n = 1, 2) and azimuthal quantum numbers

(m = 0, 1). From the figures, we observed that, for certain m and n , there are two oscillating waves in z -

direction. One is symmetrical, and the other is antisymmetrical. The coupling functions ΓIO−PR
m,kz1

(ρ) (Figure

3(d)) take their maximum values at the side interface ρ = aB , and decrease from both sides of the interface.

Based on the oscillating (decreasing) feature in t-(z -) direction, these phonon modes are labeled by ρ-IO/z -PR

mixing phonon modes. Comparing Figure 3(a) with (b), one can find that the coupling strength of ΓIO−PR
m,kz1

(z)

has obviously increase with the increase of n . It is found from Figures 3(a) and (c) that, ΓIO−PR
m,kz1

(z) nearly

keeps unchanged as azimuthal quantum number m increases for a fixed n . From Figure 3(d), it is seen clearly

that the coupling strengths of ΓIO−PR
m,kz1

(ρ) between electron with ρ-IO/z -PR mixing modes in t-direction have
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distinctly increase as m or n increases. This obviously differs from the situations of electron-phonon coupling
functions in cubic GaAs-based low-dimensional quantum structures [15, 20, 45]. In cubic GaAs-based quantum
systems, the electron-phonon coupling strength decreases with the increase of azimuthal quantum number and
order of phonon modes. The reason resulting in the difference in the two systems (ZnO and GaAs-based systems)
mainly lies in the fact of their different crystal structures, i.e. GaAs-based crystals are zinc-blende structures,
and ZnO crystal is anisotropic wurtzite structure.
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Figure 3. Coupling functions ΓIO−PR
m,kz1

(z, ρ) of electron with ρ -IO/z -PR mixing phonon modes as functions of z and

ρ for the first two branches of ρ -IO/z -PR mixing modes (n = 1, 2) with two azimuthal quantum numbers (m = 0, 1).

The solid (dash) curves in Figure (a)-(c) correspond the antisymmetrical (symmetrical) electron-(ρ -IO/z -PR) phonons

coupling function. And the curves in Figure (d) denote the coupling functions of electron-(ρ -IO/z -PR) phonons

interaction in t -direction with different phonon branches (n = 1, 2) and azimuthal quantum numbers (m = 0, 1).

The coupling functions ΓIO−PR
m,kz1

(ρ, z) of electron with antisymmetrical z -IO/ρ-PR mixing phonon modes

as functions of z and ρ are plotted in Figure 4. For clarity, only the first six branches of antisymmetrical
z -IO/ρ-PR mixing modes are depicted, and two azimuthal quantum numbers m = 0 [Figures 4(a) and (b)],

1 [Figures 4(c) and (d)] are chosen. The distributions of coupling functions ΓIO−PR
m,kz1

(z) in z -direction are

decaying and antisymmetrical (Figures 4(a) and (c)), while those of coupling functions ΓIO−PR
m,kz1

(ρ) in t-direction
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are vibrational. This is just the reason why these phonon modes are labeled by antisymmetrical z -IO/ρ-PR

mixing phonon modes. In Figures 4(a) and (c), the electron-phonon couplings |ΓIO−PR
m,kz1

(z)| of n = 4 mode

are the strongest relative to those with n = 1, 2, 3, 5, 6. In Figure 4(b) [(d)], the electron-phonon couplings

|ΓIO−PR
m,kz1

(ρ)| of n = 3[n = 1] modes is stronger in contrast to the other modes. In fact, when m and n are over

than 10, the coupling functions ΓIO−PR
m,kz1

(ρ, z) decrease with the increase of m and n (not display here). As m

and n are relatively small, the modulation effect of different dielectric functions in z - and t-directions plays
important role on the electron-phonon coupling strength, and it leads to the abnormal increase of electron-
phonon coupling strength in wurtzite quantum heterostructures. This feature has been observed in wurtzite
nitride Q2D QW and Q1D QWR structures [26, 31].
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Figure 4. Coupling functions ΓIO−PR
m,kz1

(z, ρ) of electron with antisymmetrical z -IO/ρ -PR mixing phonon modes as

functions of z and ρ for the first six branches (n = 1, 2, ...,6) of antisymmetrical z -IO/ρ -PR mixing modes with

azimuthal quantum numbers m = 0 [(a) and (b)], 1 [(c) and (d)].

Figure 5 shows the distribution feature of the coupling functions ΓIO−PR
m,kz1

(ρ, z) of electron with symmet-

rical z -IO/ρ-PR mixing phonon modes in z - and t- directions. Same as Figure 4, only the first six branches

of symmetrical z -IO/ρ-PR mixing modes with azimuthal quantum numbers m = 0, 1 are displayed here for
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clarity. Obviously, the coupling functions ΓIO−PR
m,kz1

(z) in z -direction are symmetrical and decaying from both

sides of the interfaces at z = ±d , and those of ΓIO−PR
m,kz1

(ρ) in t-direction are oscillating. This explains the

reason that these phonon modes are named as symmetrical z -IO/ρ-PR mixing phonon modes. For a certain

m , the total tendency of coupling functions ΓIO−PR
m,kz1

(ρ, z) decrease as n increases. Moreover, a comparison of

the phonon branches of Figures 5(a) and (b) with the phonon branches of Figures 5(c) and (d) show that the
electron-phonon coupling strength will become weaker and weaker as m increases. This feature is distinctly dif-
ferent from the cases of Figure 3 and Figure 4, and is completely same as the cases of electron-phonon coupling
properties in GaAs-based quantum structures [15, 20, 45].
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4. Conclusions

In the present work, important polar-optical phonon modes, i.e. the IO-PR mixing phonon modes and
their coupling behaviors with electrons in a wurtzite cylindrical QD system, have been investigated by means
of the DCM and Loudon’s uniaxial crystal model. It is found that there are two types of IO-PR mixing phonon
modes in wurtzite cylindrical QD structures, namely the ρ-IO/z -PR mixing modes and the z -IO/ρ-PR mixing
modes. Each of the IO-PR mixing phonon modes also have two forms: symmetrical and antisymmetrical. The
Fröhlich-like Hamiltonian of electron-(IO-PR) mixing phonons interactions is deduced. Numerical results on a

wurtzite ZnO cylindrical QD reveal that both the dispersive spectra of ρ-IO/z -PR mixing modes and z -IO/ρ-
PR mixing modes can only assume a series of discrete values due to the three-dimension confinement of the QD
structures. The calculated dispersive frequency supports the recent experimental result in ZnO QDs [35]. As
the height or radius of the Q0D wurtzite cylindrical QDs approach infinity, both types of the IO-PR mixing
modes reduce to the IO modes or PR modes in Q2D wurtzite QW and Q1D QWR structures. This shows the
present theories of mixing phonon modes in wurtzite Q0D QDs are consistent with those in wurtzite Q2D QW
and Q1D QWR systems [24, 25, 26, 27, 28, 29, 30, 31, 32], which further confirms the validity and reliability of
phonon mode theories in wurtzite QD systems. An abnormal electron-phonon coupling strength is observed as
the azimuthal quantum number and order of phonon modes increase. This is ascribed to the the modulation
effect of different dielectric functions in z - and t-directions of anisotropic wurtzite ZnO material [26, 31].

We hope that the present work will stimulate further theoretical and experimental investigations of lattice
dynamical properties, as well as device applications based on wurtzite ZnO QD systems.
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Appendix

The coupling coefficients B2 and B3 [in equation (14)] of the symmetrical and antisymmetrical ρ-IO/z -
PR mixing phonon modes are complex quantities. Thus they can be written as

Bi = BRi + iBIi, (i = 2, 3), (23)

where the real quantities BRi and BIi denote the real part and imaginary part of Bi , respectively. The coupling
coefficients B2 is given by

BR2 = 2kz2εz2 cos(kz1d) sin2(kz1d)(k2
z2ε

2
z2 − k2

z1ε
2
z1)/D, (24)

and
BI2 = −2kz1k

2
z2ε

2
z2εz1 cos(2kz1d) sin(kz1d)/D. (25)

The coefficients B3 are given by

BR3 = kz2εz2 sin(kz1d)[k2
z2ε

2
z2 − k2

z1ε
2
z1 + cos(2kz1d)(k2

z2ε
2
z2 + k2

z1ε
2
z1)]/D, (26)
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and
BI3 = 0. (27)

In equations (24)–(27), D is defined as

D = kz1kz2εz1εz2[sin(kz1d) − sin(3kz1d)]

×[kz1εz1 cos(kz2d) sin(kz1d) − kz2εz2 cos(kz1d) sin(kz2d)]. (28)
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