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doi:10.3906/fiz-1007-21

Role of quadrupole deformation in proton emitting

nuclei in the medium mass region

Chandrasekaran Anu RADHA, Velayudham RAMASUBRAMANIAN and
Emmanuel James Jebaseelan SAMUEL

Nuclear and Medical Physics Division, School of Advanced Sciences, VIT University,
Vellore, 632014, Tamil Nadu-INDIA

e-mail: canuradha@vit.ac.in

Received 20.07.2010

Abstract

Nuclear structural studies at and beyond the proton drip line is done with the help of proton radioactivity.

It is found that nuclei are not necessarily always spherical. The aim of the present work is to study the role of

quadrupole deformation in proton rich nuclei, particularly with respect to odd Z nuclei within the region 50

< Z < 80 near the proton drip line. The deformation is studied using triaxially deformed cranked Nilsson

Strutinsky method with tuning. Some of the nuclei in the medium mass region are found to be proton

emitters from the ground state with appreciable deformation. Nuclei with 62 < Z < 67 shows considerable

deformation that kindled the probability of instability within the nuclei. Significant ground state deformed

shapes are observed in the 67 < Z < 73 region.

Key Words: Proton radioactivity, quadrupole deformation, tuned cranked Nilsson Strutinsky shell correc-

tion method

1. Introduction

Various models and experiments are proposed to analyze the proton emitters in the region Z = 50 to 83,
as it is very fertile for one proton radioactivity studies. Many nuclei in this region undergo proton decay from
their ground state. Deformation of the nuclei exhibited in this region gives support for the nuclear structure
studies far from stability. All known ground state proton emitters are odd Z since the unpaired proton is less
bound and therefore lies closer to stability [1–3]. It is found that certain nuclei away from magic number shell

closures exhibited collective modes of rotational excitation [4–6]. This indicates that nuclei have appreciable
quadrupole moments and therefore could not be well described by the standard shell model which assumes a
spherically symmetric nuclear shape. A self-consistent microscopic model introduced by Nilsson and Mottelson
consists of a shell model for an ellipsoidal nucleus with one axis of symmetry using a deformed harmonic
oscillator potential [7].

Proton emission is very sensitive to the decay energy available and so identification of possible candidates
is influenced by proton separation energy predictions [8–11]. As more examples of proton emission have been
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observed, this situation has been partially reversed and mass model predictions can be tested against known
proton separation values [12–15]. The brief description for the formalism of triaxially deformed cranked Nilsson
Strutinsky method which has been used for our results is given.

2. Theoretical formalisms

Quadrupole deformation is a basic phenomenon to study the shape transitions as well as radioactive
nuclear process. Using the Nilsson wave function, it is possible to predict many important properties of odd Z
nuclei as a function of deformation, such as magnetic and electric quadrupole moments, shape evolutions, pairing
correlations etc. To evaluate the quadrupole deformation parameter, the formalism of our approach is very well
known [16] so a brief account of the triaxially deformed cranked Nilsson Strutinsky method is discussed.

The first section gives the theoretical framework for obtaining quadrupole deformation values and energy
calculation of the considered nuclei as a function of deformation β and nonaxiality γ parameters at different
spins by the Strutinsky method. β vibrations are oscillations that preserve the axial symmetry of the deformed
nucleus. The above two parameters, β and γ , define all possible quadrupole shapes, prolate, oblate and triaxial.
The second section deals with the theoretical formalism involving the half-life calculation of the proton emitters
based on Shanmugam-Kamalaharan model.

2.1. Triaxially deformed cranked Nilsson Strutinsky method

In nearly spherical nuclei, the coupling between the collective motion of the nucleons in the core and
motion of the loose nucleons outside the core is weak. On the other hand, for strong coupling, the surface is
distorted and the potential felt by the loose nucleons is not spherically symmetric. These nucleons, moving in
a non-spherically symmetric shell model potential, maintains the deformed nuclear shape. For a non rotating
nuclei (zero spin) shell energy calculations assumes a single particle field

H0 = Σh0, (1)

where h0 is the triaxial Nilsson Hamiltonian given by

h0 =
p2

2m
+

1
2
m

3∑
i=1

ω2
i x2

i + C l · s + D
(
l2 − 2

〈
l2

〉)
. (2)

By Hill-wheeler parameterization the three oscillator frequencies ωi are given as

ωx = ω0 exp

(
−

√
5
4π

β cos
(

γ − 2
3
π

))

ωy = ω0 exp

(
−

√
5
4π

β cos
(

γ − 4
3
π

))

and ωz = ω0 exp

(
−

√
5
4π

β cos γ

)
,
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with the constraint of constant volume for equipotentials:

ωxωyωz = ω3
0 = constant. (3)

The values [11] for the Nilsson parameters κ and μare chosen as

κ = 0.093 and μ = 0.15.

The value for �ω0 is taken as

�ω0 =
45.3 MeV

(A1/3 + 0.77)
. (4)

The same values are used for both protons and neutrons. The factor 2 in front of
〈
l2

〉
in equation (2) has been

used to obtain better agreement between the Strutinsky-smoothed moment of inertia and the rigid rotor value.
The parameter D has been accordingly predetermined with the help of single particle levels in the indicated
mass region. Using the matrix elements, the Hamiltonian is diagonalized in cylindrical representation up to
N = 11 shells.

In a rotating nucleus (I �= 0) without internal excitation, the nucleons move in a cranked Nilsson potential
with the deformation described by β and γ . The cranking is performed around the Z-axis and the cranking
frequency is ω . Thus, the Hamiltonian for a rotating case is given by

Hω = H0 − ωJz =
∑

hω, (5)

where
hω = h0 − ωjz . (6)

Diagonalization of

�ωφω
i = eω

i φω
i (7)

gives the single particle energy eω
i and wave function φω

i . The single particle energy in the laboratory system
and the spin projections are obtained as

〈ei〉 = 〈φω
i |h◦|φω

i 〉 , (8)

and
〈mi〉 = 〈φω

i |jz| φω
i 〉 . (9)

The shell energy is given by

Esp =
∑

〈φω
i |h◦| φω

i 〉 =
∑

〈ei〉, (10)

where
〈ei〉 = eω

i + �ω 〈mi〉 . (11)

Thus,

Esp =
∑

eω
i + �ωI, (12)

with the total spin given by

I =
∑

〈mi〉. (13)
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To overcome the difficulties encountered in the evaluation of total energy for large deformations through the
summation of single particle energies, the Strutinsky shell correction method is adapted to I �= 0 cases by
suitably tuning [16, 17] the angular velocities to yield fixed spins. For unsmoothened single particle level
distribution the spin I is given as

I =

λ∫
−∞

g2deω =
∑

i

〈mi〉 (14)

and

Esp =

λ∫
−∞

g1e
ωdeω + �ωI =

∑
i

eω
i + �ωI. (15)

For the Strutinsky smeared single particle level distribution, equations (14) and (15) transform in to

Ĩ =

λ∫
−∞

g̃2deω =
∑

i

〈m̃i〉 (16)

and

ẼSP =

λ∫
−∞

g̃1e
ωdeω + �ωĨ (17)

=
N∑
i

ẽω
i + �ωĨ . (18)

In the tuning method the total spin is adapted and is calculated as

I = Ĩz =
N∑

ν=1

〈
J̃z

〉ω

ν
+

Z∑
π=1

〈
J̃z

〉ω

π
. (19)

For a chosen integer or half integer spins the above relation permits to select numerically the ω values. The
calculations are repeated accordingly as the frequency values ω(I) change from one deformation point to another.

The total energy is given by

ET = ERLDM +
(
Esp − Ẽsp

)
, (20)

where

ERLDM = ELDM − 1
2
Irigω2 + �ωĨ . (21)

The liquid drop energy ELDM is given by the sum of Coulomb and surface energies as

ELDM (β, γ) = [2χ (Bc − 1) as + (Bs − 1)] , (22)

where Bc and Bs are the relative Coulomb and surface energies of the nucleus. The values used for the

parameters as and χ are as = 19.7 MeV and fissility parameter χ = (Z2/A)/45, where Z and A are the
charge and mass numbers of the nucleus.
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The rigid body moment of inertia Irig is defined by β and γ , including the surface diffuseness correction,

and Ĩ is the Strutinsky smoothened spin [18]. For an ellipsoidal shape described by the deformation parameter
βand shape parameterγ , the semi axes Rx,Ry,Rz are given by the relations

Rx = R0 exp

[√
5
4π

β cos
(

γ − 2π

3

)]

Ry = R0 exp

[√
5
4π

β cos
(

γ − 4π

3

)]

and Rz = R0 exp
[√

5
4πβ cos γ

]
.

By volume conservation, we have

RxRyRz = (R0
0)

3, (23)

where R0
0 is the radius of the spherical nucleus. Here,

R0
0 = r0A

1/3 (r0 = 1.16 fm) . (24)

The moment of inertia about the Z axis is given by

Irig (β, γ) + 2Mb2

�2
=

1
5

AM
(
R2

x + R2
y

)
�

+
2Mb2

�2
, (25)

where 2Mb 2 is the diffuseness correction to the moment of inertia and the diffuseness parameter b = 0.90 fm
[19–21].

The quadrupole deformations in the medium mass region isotopes have been obtained by the tuned
Strutinsky procedure. In the calculation performed here the spin is varied from I = 0 � to 30 � in steps of 2
� , with zero temperature (0.0 MeV); γ from -180◦ to -120◦ in steps of 10◦ , and β from 0.0 to 0.8 in steps of

0.1. The Hill Wheeler expressions for the frequencies have been used in the cranked Nilsson model [7].

2.2. Single proton emission and half lives measurements

Experimental studies of proton rich nuclei involve the observation of ground state proton emission.
The structure and decay modes of these nuclei beyond the dripline represent one of the most active areas
of experimental and theoretical studies of exotic nuclei [21, 22]. In the last few years, many ground state and
isomeric proton radioactivity have been reported in the region 51 < Z < 83. The proton emitters are identified
by calculating the separation energy values. In general, proton emission half-lives depend mainly on the proton
separation energy and orbital angular momentum, but rather weakly on the details of the intrinsic structure
of proton emitters, example, on the parameters of the proton-core potential [23, 24]. This suggests that the
lifetimes of deformed proton emitters will provide direct information on the angular momentum content of the
associated Nilsson state, and hence on the nuclear shape [25, 26]. The half lives of proton radioactivity are

studied using Shanmugam-Kamalaharan model [21, 22].

A finite range Yukawa plus Exponential potential along with the Coulomb potential is used for the post
scission region and a third order polynomial is used for the overlapping region. While the centrifugal barrier
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has negligible role to play in cluster radioactivity, it becomes appreciable in the case of alpha decay. For proton
emission the centrifugal effect should become very much considerable. Hence a centrifugal barrier is added to
the post scission region for considering proton radioactivity.

The half-life of the meta-stable system is

T =
ln2
νP

(26)

where

ν =
ω

2π
=

Eν

h
(27)

represents the number of assaults on the barrier per second. That is the characteristic frequency of the collective
model. The probability per unit time of penetration P through the barrier is

P =
1

1 + exp K
(28)

Substituting values of ν and P into T , we get

T =
h ln(1 + exp K

2Eν
(29)

Expressing the time in seconds, the energies in MeV and the lengths in fm for the lifetime, one has

T =
1.433× 10−21(1 + exp K)

Eν
(30)

The action integral K is given by

K = KL + KR (31)

where

KL =
2
�

r1∫
r0

[2Br(ν)V (r)]1/2dr (32)

KR =
2
�

r1∫
rh

[2Br(r)V (r)]1/2dr (33)

Here, KL and KR are the left and right integrals of the potential chosen. The limits of integration ra and
rb are the two appropriate limits of the integral which are found by Newton-Raphson method. This method
is applied first to calculate the life time T in seconds for the spontaneous emission of heavier fragments from
certain actinide nuclei. The branching ratios are then obtained by using the experimental half-lives of the
respective α disintegration.

The interaction potential is given by

V (r) =
Z1Z2e

2

r
+

l(l + 1)�2

2Br(ν)r2
+ Vn(r) (34)
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where the first, second and third terms on the right hand side are the Coulomb, centrifugal and finite range
potentials respectively. The centrifugal effect should become very much considerable. Hence a centrifugal barrier
is added to the post-emission region for considering proton radioactivity.

The post-scission potential used by us incorporates the most important finite range effects in the cal-
culations. Thus the proton when it is emitted from the contact point is greatly influenced by the finite range
effects. Thus this turns out to be a new approach when compared with the other calculations. The nuclear
inertia Br(r) is associated with the motion in the fission direction.

2.3. Calculation of single proton emission separation energy

The separation energy of the last proton is the energy required to separate one proton from a nucleus.
The one proton separation energy is calculated using the relation

SP (Z, N) = −M(Z, N) + M(Z − 1, N) + mP (35)

The separation energies are calculated for the low and medium mass nuclei in the periodic table. The mass excess
values for the nuclei are taken from Audi-Wapstra mass table [27]. The possible proton emitters are identified
using this separation energy calculation as Sp < 0. Figure 1 shows the proton separation energy for different

isotopes in the medium mass region. These nuclei are in a ready state to give out a proton enabling them to
reach a stable configuration. The proton is emitted or removed from the nucleus with angular momentum. The
spectroscopic factor which is the ratio of the experimental and theoretical half lives is calculated. The ratio
between the actual and theoretical half life is indicative of the influence of structure effects such as the degree
of parent and daughter wave functions overlap. Incomplete overlap is a hindrance to any decay which can only
result in longer experimental half lives and hence to spectroscopic factors less than unity [12, 25].

It is found from Table the spectroscopic factor is greater than unity for Ta156,157 , Re160,161 and Ir167 .
It shows these nuclei are effective proton emitters.

3. Results and discussion

We have calculated the one proton separation energies, their half lives, ground state quadrupole defor-
mation at the drip line and the corresponding spectroscopic factor. The calculated ground state quadrupole
deformation of the nucleus in 56 < Z < 83 is shown. The calculated values for one proton separation energy
give the list of one proton emitters as they have Sp < 0. Generally the proton separation energy calculation
helps in determining the magicity, shell closures and extrastability of the nuclides. Also they help in finding
out the possible proton emitters as shown in Figure 1. The possible one-proton emitters are found to have an
odd Z . In addition to be good proton emitters, odd Z nuclei are found to be more deformed than their even
Z neighbours. This is due to the reason that pairing correlations are strongly reduced in odd Z nuclei and as
a result the nucleus is driven towards larger deformation. Much stronger pairing in even Z nuclei results in
almost spherical shapes. The relatively high potential barrier enables the observation of ground state proton
radioactivity less possible in the region Z ≤ 50.This is due to the low Coulomb barrier [26]. The half-lives
of the possible proton emitters are calculated using SK model. The calculated values are compared with the
experimental values reported in the literature.

In the Figure 1 the energy window provides the support for a direct observation of ground state proton
emission which by principle is possible on the basis of calculated separation energies. The table includes the
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Table. Experimental and calculated half lives and Quadrupole deformations of ground state proton emitters.

Nucleus SP (MeV)

2 LOG10 T   (T in Sec) Spectros-
copic factor  

Calculated
Moller 
&Nix 
[28] 

Calculated
Expt. 

[1,10,29,30]         [31] )(

)(

2
1

2
1

ExptT

TheoryT

109I56
112Cs57
113Cs58

146Tm77
147Tm78
150Lu79
151Lu80
156Ta83
157Ta84
160Re85
161Re86
165Ir88
166Ir89
167Ir90

171Au92

−.821 

−.821 

−.981 

−1.1 

−1.05 

−1.271 

−1.24 

−1.01 

−.93 

−1.2 

−1.1 

−1.54 

−1.15 

−1.07 

−1.45 

0.20 

0.21 

0.20 

−0.159 

−0.185 

−0.11 

−.05 

−.01 

0.1 

0.05 

0.03 

0.12 

0.15 

0.15 

−0.065 

0.16 

0.208 

0.207 

−0.199 

−0.190 

−0.164 

−0.156 

−0.053 

0.045 

0.080 

0.080 

0.099 

0.107 

0.116 

−0.105 

−4.4010 

−3.5500 

−5.6910 

−1.4130 

−0.5420 

−2.4600 

−2.1710 

−0.3970 

−0.4300 

−3.0570 

−2.7020 

−4.9140 

−1.0790 

−0.3920 

−4.3640 

−4.0000                - 

−3.3010                - 

−4.7695                - 

−0.6289                - 

0.4310             0.591 

−1.3979           −1.180 

−0.8860           −0.896 

−0.8416           −0.620 

−0.5229           −0.523 

−3.0604           −3.046 

−3.4318           −3.432 

−3.4560           −3.469 

−0.8180           −0.824 

−0.9586           −0.959 

−2.6536           −4.770 

0.398 

0.562 

0.12 

0.1617 

0.1064 

0.0865 

0.051 

2.78 

1.24 

1.005 

5.369 

0.0348 

0.5480 

3.686 

0.0194 

β

one proton separation energy, ground state quadrupole deformation, the calculated half lives, experimental half
lives from reference [27] and the corresponding spectroscopic factor.
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Figure 1. A plot of calculated single proton separation

energy from the medium mass nuclei.

Figure 2. Calculated ground state quadrupole deforma-

tions for the nuclei in the 60<Z<80 region.
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For Z > 67, the nuclei is moderately deformed. Strong deformation is observed in 62 < Z < 67. A
shape transition is observed for Ho, Tm, Lu, Ta nuclei (Z = 67, 69, 71, 73). Re, Ir nuclei (Z = 75, 77) exhibit
a moderate deformation. Au nucleus shows a strong oblate deformation. Figure 2 shows the calculated ground
state quadrupole deformations of the last proton bound nuclei in the region 60 < Z < 80 region. The oblate

shape is found in the 138Te and nuclei 132Eu, 140Ho, 145Tm, 155Lu, 159Ta, 163Re, 170 Ir and 174Au are having
normal prolate shapes in their ground state. In the deformed case, shell gaps occur at N and Z values that
are different to the magic numbers for the spherical well.
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-3

-2
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0

1

L
og

 T
1/

2
 (

s)

Mass Number
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 Aberg & Page et  al
 Dong et  al

Figure 3. Calculated half lives of various nuclei are compared with different experimental values with error bars.

Figure 3 shows that the results of our half-lives calculations based on SK model agree fairly well with
recent experimental data [31]. In general, proton emission half-lives depend mainly on the proton separation
energy and orbital angular momentum, but rather weakly on the details of intrinsic structure of proton emitters
However, our calculation reproduces the data for chosen nuclei with considerable accuracy.

For proton rich nuclei in the vicinity of medium mass region, Figure 4 displays data on deformation that
are extracted from Moller and Nix calculations (solid circles), are compared with the present calculation (open

circles). Our calculated deformation values are compared with the values of Moller-Nix et al. [28] and it is
found that our values are in agreement with their values. The spherical shapes are found in the region Z = 71,
73 and 75. From the table, one could notice that normal deformations β 2 = 0.10 exist in the chosen mass
region. It illustrates the quadrupole deformations of odd Z nuclei in the region 60 < Z < 80. Significant
quadrupole deformations are observed in the nuclei of Z = 63, 65 and 79. The variations in the calculated
values of β , compared to Moller and Nix calculations, are found to be negligibly small. Both oblate and prolate
quadrupole deformed shapes are observed in the chosen region. This suggests that the half-lives of deformed
proton emitters will provide direct information on the angular momentum content of the associated Nilsson
state, and hence, indirectly on the nuclear shape. This information kindles the structural determination of
various nuclei in the chosen region. Since most of the nuclei represented in the Figure 4 are predicted to have
a modest but nevertheless non-zero quadruple deformation β ≈ 0.15, it was suspected that calculating the

half-lives under the assumption that they had spherical shapes wouldn’t work. The nuclei Eu130,131,132 and

Ho140,141 are of special interest since they are found to be strongly deformed (β ≈ 0.3).
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Figure 4. Quadrupole deformation of various nuclei in 60 < Z < 80 region. The solid circle shows values from Moller

and Nix [28] and hollow circle data are calculated from cranked Nilsson Strutinsky shell correction method [18].
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Figure 4. Continued

4. Summary and conclusion

In this work, we have analyzed the proton emitters in the region 57 < Z <81. We have used the
SK model for our half life calculations which is essential for exotic nuclei with a realistic potential. We have
identified the proton emitters using separation energy calculations. The even Z nuclei at the dripline are
not accessible in experiments and we have compared the odd Z nuclei with Moller and Nix [28] values. We
have calculated the corresponding spectroscopic factor and the quadrupole deformation is calculated using the
cranked Nilsson Strutinsky method with tuning. Quadrupole deformation is a significant parameter which leads
to radioactive decay by proton emission. Shape transitions observed in the Z = 67, 69, 71, 73 nuclei could be
studied in future in a detailed way. The SK model and the cranked Nilsson Strutinsky shell correction method
predicts the location of the proton drip-line, the ground-state quadrupole deformations, single proton separation
energies at and beyond the drip-line, the deformed single-particle orbital occupied by the odd valence proton,
and the corresponding spectroscopic factors. In conclusion, because of the microscopic shell correction method
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and because of the reliability of the deformation diagrams employed in the calculations based on this method,
it will appear to be useful in estimating deformations in the ground states of proton rich nuclei.
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