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Abstract

This paper presents cosmological models in which the gravitational and cosmological constants G and

Λ are time-dependent. We find a variety of solutions for the variation of cosmological parameters. It is

also found that, in the case of matter dominated Robertson-Walker Universe, if the cosmological constant

Λ �= 0, the Hubble’s constant H is not constant at all but inversely proportional to the cosmic time. The

conservation law for the energy momentum tensor is still valid with our law of variation: Λ ∝ R−2 and

Gρ ∝ Λ
8π

.
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1. Introduction

In general relativity the cosmological constant Λ may be regarded as the measure of energy density of the
vacuum and can, in principle, lead to the avoidance of the big-bang singularity, which is a characteristic of other
Friedmann-Robertson-Walker (FRW) models. The cosmological constant problem has a long history, and while
there are many possible resolutions, none has gained widespread acceptance. In classical general relativity, the

energy density and pressure of the vacuum obeys the relation ρc2 = −p = Λc4/8πG , where c is the speed of
light and G is the gravitational constant. The astrophysically-determined value of Λ, for the present epoch at
least, is small but in quantum theory, the vacuum (or zero-point) energies associated with particle interactions

lead to a value of Λ which is big. This discrepancy may be large as 10120 . The authors of [1, 2] have recently
reviewed this problem, and outlined a resolution wherein the classical value of Λ is essentially the statistical
value “left over” from numerous stronger interactions described by quantum field theory.
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Some of the recent discussions on the cosmological constant “problem” and consequence on cosmology

with a time-varying cosmological constant are invested by [3]. [4] stressed that the relation Λ = Bt −2 plays

an important role in cosmology. Abdel-Rahman in [5] found the same relation. Chen and Wu in [6] suggested

that Λ ∝ R−2 where R is the Scale factor in Robertson-Walker metric. Berman in [7, 8] discussed variable

Λ, cosmological models with G as constant or variable using the law of variation Λ ∝ t−2 rather than the

law recently suggested by [6] (i.e. Λ ∝ R−2). The authors of [9] have constructed homogeneous isotropic
cosmological models with variable cosmological constant and gravitational constant satisfying the present day
observational data and the initial conditions as proposed by [10] with some additional requirements [11–19].

However, all vacuum decaying cosmological models do not predict acceleration. Workers in [20–22] have proposed

a cosmological model with a cosmological constant of form Λ = B R̈
R

, where B is a constant. Following the

same decay law, recently [23, 24] has investigated cosmic acceleration with positive cosmological constant and
analyze the implication of model built-in cosmological constant. one of the motivations for introducing Λ term
is to reconcile the age parameter and the density parameter of the universe with recent observational data.

Also, [25] obtained a cosmological model with cosmological term of the form Λ ∝ R̈
R and have also investigated

well known astrophysical phenomenon.
In this paper we discuss a model with variables Λ and G while the conservation law for the energy-

momentum tensor is still valid with the assumptions that Λ ∝ R−2 and

Gρ ∝ Λ
8π we find that in the case of matter dominated Robertson-Walker universe if the cosmological

constant Λ �= 0,the Hubble’s constant is not a constant at all but it varies inversely with cosmic time. Also we
found that the Einstein field equations with variables G and Λ with our assumption.

2. Mathematical formulation

The Einstein field equations with time-dependent cosmological and gravitational “constants” is given by
the relation

Rμν − 1
2
gμν = 8πGTμν + Λgμν, (1)

where Rμν is the Ricci tensor, G and Λ being the variable gravitational and cosmological terms.

The usual Conservation law is
Tμν

;ν = 0. (2)

By applying equation (2) in (1), we get

8πG,μ Tμν + Λ,μ gμν = 0. (3)

It shows that Λ and G vary simultaneously. Workers in [7, 8] and [5] have constructed homogenous and isotropic

cosmological models with the use of equations (1), (2), (3) and by assuming the variations of Gρ and Λ as

Gρ = At−2, Λ = Bt−2. (4)

Let us consider the line element of Robertson-Walker universe

ds2 = dt2 − R2(t)
[

dr2

1 − Kr2
+ r2dθ2 + r2 sin2 θdϕ2

]
, (5)
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where R(t) is the scale factor and K is the curvature index which takes the values +1, 0, -1.

Also let us consider a particle at the origin r = 0 and another particle at r then the proper distance X

between the two particles at a time t is given by

X = R(t)

T∫
0

dr√
1 − Kr2

=

⎧⎨
⎩

R sin h−1r, for open model;
Rr, for flat model;

R sin−1 r, for closed model,
(6)

which implies X ∝ R(t).

By differentiating X with respect to t , we obtain the proper velocity V of the particle at r relative to
the particle at the origin relining that r remains constant. Therefore,

V = X = R

T∫
0

dr√
1 − Kr2

=
Ṙ

R
X. (7)

By Hubble’s law,
V = HX. (8)

We know that

H ∝ Ṙ

R
. (9)

The energy momentum tensor is given by the equation

Tμν = (p + ρ)uμuν − pgμν , (10)

where p is the proper pressure and ρ is the proper density. The four velocity of the fluid particle uμ is given
by

uμ = (0, 0, 0, 1). (11)

As did Berman, we consider the Einstein field equation as

Rμν − 1
2
Rgμν + Λgμν = −8πGTμν . (12)

And the conservation law is
Tμν

,ν = 0. (13)

By inserting (13) into equation (12), we get

8πG,μ Tμ
ν + Λ,μ gμ

ν = 0. (14)

Inserting equations (5), (10) and (11) into (12), we get

−2
Ṙ

R
− Ṙ2

R2
− K

R2
= 8πGp − Λ, (15)

and

3
Ṙ2

R2
+

3K

R2
= 8πGρ + Λ. (16)
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Differentiating equation (16) with respect to t , we get

8π
(
Ġρ + Gρ̇

)
= −3

Ṙ

R

(
−2R̈

R
+ 2

Ṙ2

R2
+

2K

R2

)
− Λ̇. (17)

Adding (15) and (16), we get

−2
R̈

R
+ 2

(
Ṙ

R

)2

+
2K

R2
= 8πG (p + ρ) . (18)

Then equation (17) becomes

Ġρ + Gρ̇ + 3
Ṙ

R
Gρ = −3

Ṙ

R
Gp− Λ̇

8π
. (19)

From equation (19), we get

R3

(
Ġρ +

Λ̇
8π

)
+ G

[
d

dt

(
ρR3

)
+ 3pṘR2

]
= 0. (20)

By using equations (5), (10) and (11), the above equation (12) reduces to

d

dt

(
ρR3

)
+ 3pR2Ṙ = 0. (21)

Using (21) in (20), we get

Ġρ +
Λ̇
8π

= 0. (22)

From equations (15) and (16), we get

3R̈ = −4πGR

[
3p + ρ− Λ

4πG

]
. (23)

When we consider the time dependence of various physical quantities in the expanding universe. These are
conveniently parameterized in terms of the scale function R(t). If ψ be the Baryon density, then

Ψ(t)R3(t) = Constant. (24)

The above result is intuitively obvious. The element of spatial volume is seen from equation (5) to be proportional

toR3(t); hence the baryon number density must obey the law

Jλ = Ψuλ, (25)

where uλ is given by
uμ = 0 = uμ; uo = uo. (26)

Since in the matter-dominated era, the dominant contribution to the density ρ comes from non-relativistic mass
densities, ρ̃ Ψm , where m is the nucleon rest mass.

Then equation (24) reduces to

ρR3 = constant. (27)
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Moreover, the density of radiation in the universe follows the law ρ ∝ R−4 (R = radius of the universe) while

that of its matter content obeys ρ ∝ R−3 . At the present time the latter density greatly outweighs the former
[26].Using this law we can obtain the same relation given by the equation (27).

Then equation (21) becomes

3pR2Ṙ = 0, (28)

since the scale factor of the universe R �= 0. Relation (28) can be survived only when p = 0.Thus the problem
reduces to the case of dust distribution.

Now, from equation (23), we obtain

3R̈ = −4πGR

[
ρ − Λ

4πG

]
. (29)

Using equation (4) in equation (29), the latter reduces to

H ∝ 1
t
. (30)

The result given by equation (30) shows that the Hubble’s Constant varies inversely as the cosmic time t .

This result tallies if which result obtained in solving a problem of a flat matter dominated (Einstein- de Sitter)

universe where the Cosmological constant Λ = 0, [27].

The difference obtained in the two solutions is that, in the present problem Λ �= 0, while in the (Einstein-

de Sitter) universe the Cosmological constant Λ = 0. Equations (16), (21), (22) and (23) are the fundamental

equations governing a homogeneous and isotropic cosmological model of the universe. Equations (16), (21)

and (22) are same as the corresponding field equations in general relativity but we have obtained additional

Equation (23) due to variation of G and Λ.

3. Solutions with variation of G and Λ and their interpretations

We consider the dependence of the pressure in a homogeneous isotropic model of the universe as

p = ερ, (0 ≤ ε ≤ 1). (31)

From equations (21) and (31), we obtain

ρ̇

ρ
= −3 (1 + ε)

Ṙ

R
. (32)

We assume,

Gρ ∝ Λ
8π

, i.e.Gρ =
αΛ
8π

, (33)

and

Λ ∝ 1
R2

, i.e. Λ ∝ γ
1

R2
, (34)

where α and γ are the constants of proportionality. From equation (34), we get

Λ̇ = −2γR−3Ṙ, (35)
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then equation (22) reduces to

Ġρ =
1
4π

γR−3Ṙ. (36)

From equations (36) and (33), we get

Ġ

G
=

2
α
· Ṙ

R
. (37)

From equation (2), we obtain

Ġρ = − Λ̇
8π

. (38)

From (33) and (38), we get

Ġ

G
= − 1

α
· Λ̇
Λ

. (39)

From (37) and (39), we get

Λ̇
Λ

= −2
Ṙ

R
. (40)

Using the conditions

Λ = Λ0, t = t0, G = G0, ρ = ρ0, (41)

and integrating (32), (37) and (40), we get

ρ = ρ0

(
R

R0

)−3(1+ε)

, (42)

G = G0

(
R

R0

) 2
α

, (43)

and

Λ = Λ0

(
R0

R

)2

. (44)

From equation (16) and (33), we have

Ṙ =

√(
1 + α

3

)
ΛR2 − K. (45)

By using the relation (34), we get

Ṙ =

√{
(1 + α)

3
γ − K

}
. (46)

From equations (23), (31) and (33), we get

3R̈ =
{

1 − α(1 + 3ε)
2

}
γ

R
. (47)
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During evolution of the Universe, we propose that the density decreases from ρ to ρ 0 and G increases from G

to G0 as R expands from R to R0 .

From equations (42) and (43), we have 1 + ε > 0 and α < 0.

Since G > 0 and ρ > 0 during the expansion of the Universe and α < 0, from equation (44) it is clear
that Λ < 0.

Also, from equation (22) for ρ > 0 and Ġ < 0, we must have Λ̇ > 0, and hence during the expansion of

the Universe Λ must be negative and increasing function of time by equation (40).

On the other hand if we assume that Λ > 0, Λ̇ > 0 and ρ > 0 then Ġ > 0 and G < 0 during the
expansion of the Universe which is unphysical.

From equation (47) it is clear that for α < 0, ε > 0, Λ < 0 implies that R̈ < 0 i.e. the model is
decelerating.

4. Concluding remarks

We have seen that in the case of matter dominated Robertson-Walker universe, if the cosmological
constant Λ �= 0, the Hubble’s constant is not a constant at all, but varies inversely with cosmic time. Also we

found that the Einstein field equations with variables G and Λ such that Gρ = αΛ
8π

and Λ ∝ 1
R2 , it is found

that the usual conservation law implies that α < 0, for G > 0 and G < 0, Λ < 0 for Λ̇ > 0. We conclude that

the relation Λ ∝ t−2 , which was pointed out by [4], seems to play a major role in cosmology.
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