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Abstract

This work is devoted to study the temperature dependence of the effective size
�
r2
�

and expansion

energy Ex,z of a Bose-Einstein condensate in a 3D non-cubic optical lattice. Correction due to the

finite size, interatomic interaction and the deepness of the lattice potential are given simultaneously. The

calculated results show that these two parameters increase with the lattice depth or the relative frequency

at temperature less than the transition temperature, (T < To ); yet it has little effect at temperatures

higher than the transition temperature (T > To ). Both the effective size and expansion energy follow a

characteristic temperature dependence, i.e.
�
r2
�
, E ∝ (T/T0)

4 if T < T0 and
�
r2
�
, E ∝ (T/T0) if T > T0 .

For a 3D non cubic optical potential the effect of relative frequency is much more than the effect of the

optical potential depth. Thus for a non-cubic optical potential one has to use the pure harmonically trapped

boson gas as the zeroth order approximation in any perturbation or numerically treatment for this system.
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1. Introduction

Recently, trapped Bose gases in a combined harmonic-optical potential is used as a prototype for strongly
quantum phase transition. Indeed, the condensate Boson in optical potential offer a new opportunity to
investigate the interplay connection between the superfluid (SF) and Mott insulator (MI) phase transition

[1]. Experiments in this area show that the phase-coherent Bose-Einstein condensate (BEC) in the optical

lattice is a SF [2]. Greiner et al. [1] pointed out that, as the lattice depth is increased, the quantum tunneling
of atoms from one optical site to another is stopped, resulting in loss of superfluidity, which is identified by
vanishing of the condensed fraction. In such case BEC is transformed to a MI state in which exact numbers of
atoms are localized at individual lattice sites and its free mobility to a nearly site by tunneling is stopped as
insulator. Consequently, no interference pattern is formed upon free expansion of such a BEC. This phenomenon
represents a superfluid-Mott insulator quantum phase transition. The SF to MI transition can be accessed by
changing the depth of the optical potential and has been observed in different trap geometry [3, 4, 5, 6, 7].

65



SOLIMAN

One way of obtaining information about the properties of this phase transition is to investigate its behavior
after it is released from the trap. The most important thermodynamical parameters for this investigation are
the effective size and the expansion energy. These two parameters have special behavior at temperature greater
or less than the transition temperature T0 [8, 9, 10]. Moreover, they are affected by changing of the lattice depth

or relative frequency (the ratio between recoil frequency and geometrical average of the harmonic frequencies).

In this paper, an expression for the effective size and expansion energy of the condensate Bose gas in a
3D non-cubic optical lattice is calculated. The semiclassical approximation, which is the density of state (DOS)
approach is used. In this approach the sums over the energy levels for the thermodynamical quantities are
approximated directly by ordinary integrals weighted by an appropriate DOS. This approximation has been
widely used in variety of problems in statistical physics [11] and in BEC [12, 13, 14, 15]. Previous studies
have showed that the resulting thermodynamical parameters depend crucially on the choice and construction
of the DOS. The calculation techniques are extension for that given in our previous work [16, 17, 18, 19].
The parametrized DOS here providing a consistent way for treating the main effects which can be altering
the harmonically trapped Bose gas in a non-cubic optical lattice. I have undertaken this study in an effort to
provide some theoretical support for the experiment. The calculated results show that, for high temperature
(KBT >> �ω ), and ignoring the contribution from the condensate, the effective size and expansion energy are

proportional to T for T > T0 , and proportional to T 4 for T < T0 . This temperature dependence behavior
agrees with the measured experimental data [6, 7, 8]. Changing the depth of the optical potential or changing
the magnetic potential frequencies led to significant change in the effective size or expansion energy.

This paper is organized as follows. The present section provides a brief introduction. Section two provides
the theoretical model. The calculation of the effective size and expansion energy is outlined in section three.
Section four presents a short conclusion.

2. Theoretical model for BEC in a combined potential

Let us consider a Boson gas trapped in a combined potential given by [20, 6]

V (r) =
1
2
m [(ω2

x + ω2
lat,x)x2 + (ω2

y + ω2
lat,y)y2 + (ω2

z + ω2
lat,z)z

2] − 1
3

k4 (Vxx4 + Vyy4 + Vzz
4). (1)

Here, ωlat,l = 2
√

ERVl

�
with l stands for x, y and z , {ωx, ωy, ωz} are the effective trapping frequencies of the

external harmonic confinement and {Vx, Vy, Vz} are the potential depths of the three superimposed 1D laser

beam standing waves. The wave vector of the laser beam is accounted by k = 2π/λ′ , with λ′ is the laser

wavelength. In terms of k, we have to introduce the recoil energy ER = (�2k2/2m) {≡ �ωR} as an energy scale
which measures the lattice depth.

In order to use the density of states approach, the single particle spectrum for this system is needed. For
the potential (1) it is impossible to find an exact analytical expression for these energy levels. However, this

potential is characterized by a single particle energy level is given by [16]

En = nx�(ω′
x − ωR

2
) + ny�(ω′

y − ωR

2
) + nz�(ω′

z − ωR

2
) + E0, (2)

where ω′
l = ω2

l + ω2
lat,l , and E0 = 3

2�ω̄ with ω̄ = 1
3(ω′

x + ω′
y + ω′

z − 3
2ωR) is the mean of the combined

frequencies. Mainly the lattice potential depth is measured in units of the recoil energy ER . Thus one has to
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write Vx,y,z = integer × ER , and rewrite ω′
x,y,z in the form

ω′
x =

√
(ω2

x + 4ERVx/�2) = ωx

√
1 + 4sxt2x,

ω′
y =

√
(ω2

y + 4ERVy/�2) = ωy

√
1 + 4syt2y, (3)

ω′
z =

√
(ω2

z + 4ERVz/�2) = ωz

√
1 + 4szt2z,

where sx,y,z = Vx,y,z

ER
, tx,y,z = ωR

ωx,y,z
and ER = �ωR is used. Moreover in terms of ωR the mean of the combined

frequencies ω̄ is given by ω̄ = 1
3(ωx[

√
1 + 4sxt2x − tx/2] + ωy[

√
1 + 4syt2y − ty/2] + ωz[

√
1 + 4szt2z − tz/2]).

The accurate DOS for the spectrum (2) is calculated in [19] and is given by

ρ(ε) =
1
2

ε2

(�Ω′)3
+

ε

(�Ω′)2

[
3
2

ω̄

Ω′ +
2
3

μ

�ω̄

]

=
1
γ3

[
1
2

ε2

(�Ω)3
+

ε

(�Ω)2

[
3
2

ω̄

Ω
+

2
3

μ

�ω̄
γ

]]
, (4)

where Ω′ = [(ω′
x− ωR

2
)(ω′

y − ωR
2

)(ω′
z − ωR

2
)]1/3 and Ω = [ωxωyωz]1/3 are the geometrical average of the combined

frequencies and the harmonic frequencies respectively, μ is the chemical potential, and the parameter γ is given
by

γ =
Ω′

Ω
=

[
[
√

1 + 4sxt2x − 0.5tx][
√

1 + 4syt2y − 0.5ty][
√

1 + 4szt2z − 0.5tz]
]1/3

. (5)

This parameter gives the ratio between the effective trapping frequencies of the combined potential and the
effective trapping frequencies of the magnetic potential. Moreover, it includes the effect of the depth of the
optical potential. In the absence of the optical potential γ = 1.

The chemical potential for this system is a local potential and it is dependent on the lattice site k . For
the system under consideration the chemical potential can be approximated by the functions [16, 21, 22]

μk=0 =
(

π2(VxVyVz)1/3

4ER

)1/10

μ0 =
(

π2(sxsysz)1/3

4

)1/10

μ0, (6)

where μ0 is the chemical potential in the absence of the lattice. For simplicity, one has to use a dimensionless
interaction parameter η in equation (6), first introduced by Dalfovo et al. and Naraschewski [23, 24]. This
parameter is determined by the ratio between the chemical potential calculated at T = 0 and the transition
temperature T0 for the noninteracting particles in the same trap,

η =
μ0,T=0

KBT0
. (7)

This scaling parameter vanishes when the thermodynamic limit is taken [17]. In terms of η the chemical
potential is given by

μk=0

KBT0
= η

(
π2(sxsysz)1/3

4

)1/10

(8)
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This equation shows that increasing the lattice depth in the x, y and z lead to increasing in the chemical
potential of the condensate. This behavior is in agreement with the theoretical calculation given in [25] and it

is generalization for the well known Thomas-Fermi results holding for magnetically trapped condensate [23] to

include the effects of the optical lattice [19].

Mainly, the BEC is described within the grand canonical ensemble. Moreover, its relevant thermodynamic
quantities are calculated from the partial derivative of the corresponding thermodynamical potential q . For a
Boson trapped in a combined potential the thermodynamical potential q is given by the relation [11, 14, 15, 16]

q = q0 +
∞∑

j=1

zj

j

∫ ∞

0

ρ(ε)e−jβεdε,

= q0 + γ−3

[(
KBT

�Ω

)3

g4 (z) +
(

KBT

�Ω

)2

g3(z)
{

3
2

ω̄

Ω
+

2
3

μk

�ω̄
γ

}]
, (9)

where gk(z) =
∑∞

j=1(z
j/jk) is the usual Bose function.

3. Effective size and expansion energy

One of the key parameters for describing an expanding condensate is its effective area, which is normally
defined as the square root of the condensate widths along the two symmetric axis. In general, for the magnetic
traps that are used in the experiment the axis are parallel to the axial and the radial direction, respectively.
Theoretically, the expansion of the condensate width and its effective size as a function of temperature, can be
calculated from the first principal of quantum mechanics [9, 26]. In the following, for simplicity I will consider
an isotropic harmonic potential. Generalization to an isotropic one is straightforward.

The width of a single particle state |n〉 of a trapped Bose gas in spherically symmetric potential

V (r) =
M

2
ω2

comr2 − k4

3
(Vxx4 + Vyy4 + Vzz4)

is given by [10],

〈
r2
n

〉
=

〈2V (r)〉
Mω2

com

=
En

�ω2
com

a2
r, (10)

where En = n�ωcom + 3
2�(ωcom − ωR

2 ), with ωcom =
√

ω2 + ω2
lat and ar =

√
�

Mωcom
is the characteristic length
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for the trap. The average width of a state |n〉 occupied by N particles is given by

〈
r2

〉
=

∞∑
n=0

Nn

〈
r2
n

〉

=
a2

r

�ωcom

∞∑
n=0

NnEn

=
a2

r

�ωcom
(KBT 2)

∂q

∂T
|z

=

{
a2

r

�ωcom
E0 + r2

c

[(
T

T0

)4

+
2
3

ζ(3)
ζ(4)

R

(
T

T0

)3
]}

,

(
T

T0

)
< 1

=
{

a2
r

�ωcom
E0 + r2

c

[
α

(
T

T0

)
+

2
3

g3(z)
ζ(4)

R

]}
,

(
T

T0

)
≥ 1. (11)

Here, r2
c = 3a2

rζ(4)[N/ζ(3)]4/3 denotes the width of the condensate at ( T
T0

) = 1, α = g4(z)ζ(3)
g3(z)ζ(4) ≈ 1 has a weak

dependence on the temperature and Nn is the usual Bose-Einstein distribution. Bracket in equation (11) takes

a familiar form with the first term denoting the ground state size (condensate), while the second term gives the

excited states(thermal component). Zhang et al. [9] pointed that for high temperature KBT >> �ωcom the
contribution from the condensate can be ignored. This approximation leads to the relations

〈
r2

〉
r2
c

=
(

T

T0

)4

+
2
3

ζ(3)
ζ(4)

R

(
T

T0

)3

,

(
T

T0

)
< 1

=
(

T

T0

)
+

2
3

g3(z)
ζ(4)

R,

(
T

T0

)
≥ 1 (12)

with

R =

[
3
2

ω̄

Ω

(
ζ(3)
N

)1/3

+
2
3
γ2 η

Ω
ω̄

(
π2(sxsysz)1/3

4

)1/10
]

. (13)

Results in equation (12) is consistent with the earlier experimental reports that the width of the absorption

image of a Bose gas is proportional to its temperature in the absence of a condensate [4, 8]. A sudden drop for
the effective width occurs when temperature is lowered than the transition temperature T0 . In the following,

the condensate phase will be considered in detail, that is in the case of ( T
T0

) < 1.

For cylindrically symmetric trap with combined frequencies ωx = ωy and ωz = λωx,y (for which the

effective potential is defined in equation (1)), the temperature dependence of the three lengths are the same as
in a spherically symmetric trap discussed above, except that the prefactors become

z2
c = a2

z λ
2
3 ζ(4)[N/ζ(3)]4/3

x2
c ≡ y2

c = a2
x,y λ− 1

3 ζ(4)[N/ζ(3)]4/3, (14)

where ax,y,z =
√

�/Mωx,y,z are the characterized lengths for the axial and radial directions, respectively. The
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effective size can be parametrized from equation (14) as

S(t) =
√

〈z2〉 〈x2〉

= Scλ
− 1

6

{(
T

T0

)4

+
2
3

ζ(3)
ζ(4)

R

(
T

T0

)3
}

, (15)

where λ = ωz

ωx
, Sc = azaxζ(4)[N/ζ(3)]4/3 is the effective size at the transition temperature and

〈
z2

〉
and〈

x2
〉

are the effective square lengths in the axial and radial direction respectively, it is defined such that

〈z2〉
z2

c
= 〈x2〉

x2
c

= 〈y2〉
y2

c
= {( T

T0
)4 + 2

3
ζ(3)
ζ(4)R( T

T0
)3}.

The calculated results from equation (15) are represented in Figures 1 and 2. These two figures reveal
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Figure 1. Effective size as a function of the reduced temperature and the normalized lattice depth s = (VxVyVz)1/3/ER .

The relative frequency is taken to be t = ωR/(ωxωyωz)
1/3 = 0.1. The trap parameters are: ωx = ωy = 2π × 50 Hz,

ωz = 2π × 500 Hz, and N = ×105 .

that the effective size is sensitive to the variation of temperature and the lattice depth or the relative frequency,
respectively. At temperature below BEC transition, Figure 1 reveals that the effective size is freezing at the
value Sc at temperature T = .95T0 . For any lattice depth the effective size increases monotonically to its
maximum value with T increasing toward T0 .

Figure 2 shows that the effective size freezes at the value Sc at temperature T = .85 T0 . Thus, the effect
of changing the magnetic trap is more than the effect of changing the lattice depth. However, freezing out of the
effective size is used as an indicator of losing the SF [18, 19]. So, the effective size may be served as a practical
thermometer to identify the temperature range of the MI phase. At this site, the obtained results provide a
solid theoretical foundation for the experiment.

Another important quantity to discuss is the expansion energy (release energy) in the axial and redial
direction. It can be calculated from the experimental measurements of its axial and redial width and the time of
flight as has been done in [4, 27]. Since the width of the condensate is measured after a long time-of flight, the

expansion energy is set to be a pure kinetic energy [8, 9]. From the first principal of mechanics, the expansion
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Figure 2. Effective size as a function of the reduced temperature T/T0 and the relative frequency t = ωR/(ωxωyωz)
1/3 .

The lattice depth is taken to be s = (sxsysz)
(1/3) = 12. The same trap parameters given in Figure 1 are used.

energy in radial and axial direction are fixed by the relations

Ez =
1
2
M

〈
v2

z

〉
τ→∞ =

1
2τ2

M
〈
z2

〉
τ→∞

Ex ≡ Ey =
1

2τ2
M

〈
y2

〉
τ→∞ , (16)

where τ is the time of flight and v is velocity of flight. Assuming that, on average, the kinetic and interaction
energy are equal, then

Ez =
1

2τ2
Mz2

c

{(
T

T0

)4

+
2
3

ζ(3)
ζ(4)

R

(
T

T0

)3
}

Ex ≡ Ey =
1

2τ2
My2

c

{(
T

T0

)4

+
2
3

ζ(3)
ζ(4)

R

(
T

T0

)3
}

(17)

Where equation (12) is used here. Rescaling equation (17) by the characteristic energy scale NKBT0 , one has

Ez

NKBT0
=

λ
2
3

2τ2ω′2
z

{
ζ(4)
ζ(3)

(
T

T0

)4

+
2
3
R

(
T

T0

)3
}

Ex

NKBT0
≡ Ey

NKBT0
=

λ− 1
3

2τ2ω′2
y

{
ζ(4)
ζ(3)

(
T

T0

)4

+
2
3
R

(
T

T0

)3
}

. (18)

This equation provides a very important result; it shows that the expansion along the axial direction is less than
the expansion in the radial direction by a factor λ , i.e. Ez = λEx,y , independent of both lattice depths. The

difference in the expansion energy is attributed to the strong anisotropy of the trapping potential. The lack of
expansion in the axial direction reflects the fact that the condensate has effectively been split up into several
smaller condensates confined in the individual lattice wells [3].
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4. Conclusion

In this paper, a detailed study has been given of a Bose gas trapped in a 3D combined harmonic-optical
potential. Simple analytical semiclassical approximation based on a piecewise density of states (DOS) is used
in this study. The effective size and the expansion energy are investigated. The main effects which can alter the
Bose gas in such trap are collected simultaneously in one parameter, R . Thus, for a non-cubic optical potential,
one has to use the pure harmonically trapped boson gas as the zeroth order approximation in any perturbation
for numerically treatment of this system. The obtained results show that both the lattice depth and the relative
frequency have significant effects on this two parameters. The effect of anisotropic of the magnetic trap frequency
is much more than the effect of lattice depth. The above mentioned quantities can be characterized the SF-MI
transition for the experimental systems with interacting atoms in an optical lattice. Thus, the obtained results
provide a solid theoretical foundation for the current experiments. Finally, the calculated parameters have the
same behavior under decreasing or increasing temperature, and lattice depth. Thus they are fully reversible.
This means that both SF and MI phases are quantum phases for any optical potential [28].
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