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Abstract

The structural and optical properties of CdTe thin films prepared at a low substrate temperature were

investigated before and after the CdCl2 /annealing. The crystal structure of CdTe film was cubic with a

strong (111) preferential orientation. Annealing at 400 ◦C without CdCl2 treatment results in a decrease in

the (111) peak intensity while the intensities of the (220), (311) and (331) peaks appeared, indicating that

the texture is significantly changed. However, after the CdCl2 /annealing, the film exhibited a hexagonal

phase as a dominant structure. The scanning electron microscopy patterns showed that the as-deposited and

annealed samples had almost the same grain size. However, the grain size of the sample annealed after the

CdCl2 treatment increased significantly. The optical band gap values for the as grown and CdCl2 /annealed

films were determined to be ∼1.48 eV and ∼1.49 eV, respectively.
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1. Introduction

Cadmium telluride is one of the most promising polycrystalline materials for thin film solar cells due to
its some physical properties: (i) it has a direct band gap (approximately 1.5 eV at room temperature), (ii) it

has a high absorption coefficient (larger than 105 cm−1 at wavelengths around 700 nm), (iii) it can be obtained

as p-type. It is known that cadmium telluride, like other II-VI compounds, can exist in both the cubic (ZB)

and hexagonal (WZ) crystal structures and the energy difference between these two phases is small [1]. For

this reason, it is difficult to grow pure single phase films for CdX (X = S, Se, Te) compounds. However, it
is possible to stabilize the preferred phase to dominate the film by choosing appropriate growth and control
techniques.
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For the case of CdTe, the equilibrium cubic phase is relatively well known compared to its hexagonal phase
which is poorly understood because it is metastable and difficult to produce in pure form [2]. The expected
changes regarding optoelectronic properties in the hexagonal CdTe phase, such as a band gap broadening,
together with the fact of a better matching with hexagonal CdS window layer in CdTe based solar cells, may
be an important stage to increase solar cell based CdTe performance.

Aramoto et al [3] have reported on a CdTe/CdS solar cell with an efficiency of 16%. Some of the commonly

used low cost growth techniques for CdTe thin film production include electrodeposition [4], spray pyrolysis [5]

and close-spaced sublimation [6]. Irrespective of the growth process, the grain size and surface morphology
of CdTe films are two of the important parameters that affect the performance of active devices such as solar
cells made on such layers. For example, fabrication of high efficiency solar cells requires films with columnar
grains to minimize grain boundary crossings by light generated minority carriers. Therefore, understanding
the microstructure and morphology evolution in polycrystalline CdTe films is important to further develop an
understanding of the performance of devices employing these layers. Polycrystalline films are used in a wide
variety of applications in which their average grain size, distribution of grain size and distribution of grain
orientations affect their performance and reliability. These grain structure characteristics are often defined by
grain formation and growth during the film formation period. However, they may also be modulated through
post-deposition process steps involving high temperature annealing [7–8].

Interest in the properties of CdTe films grown at low temperatures has increased in recent years due to
their various device applications [9–14]. It is known that the grain boundaries in polycrystalline CdTe thin
films have a direct influence on the electrical properties of the device. One of the critical stages in the device
fabrication is the treatment of the CdTe film, after application of the CdCl2 layer on the surface: a process that
is essential in the production of high-efficiency CdS/CdTe cells [15]. In this work, we produced CdTe thin films

on the glass substrates at -73 ◦C (liquid nitrogen cooled) and then annealed the films at 400 ◦C treated with
and without CdCl2 . Effects of growth and post-deposition annealing on the film properties such as stabilization
of crystal structure, grain size, texture, and optical band gap were studied to see if there was any correlation
between these parameters.

2. Experimental

CdTe thin films were deposited by vacuum evaporation at a vacuum level of 3×10−2 Pa in a quasi-closed
volume on glass substrates cooled by liquid nitrogen [16–18]. The films were grown at substrate temperatures

of -73 ◦C using a CdTe powder source. The growth rate was ∼5 nm/s and the final thickness of the film
determined from the transmittance interference pattern was found to be in the range of 2–3 μm. These films
were annealed before and after CdCl2 treatment at 400 ◦C for 30 min. The CdCl2 layer was deposited on
CdTe film surface using a saturated solution of CdCl2 in boiling methanol for 5 min. After the application of
the solution on the film surfaces, the films were heated at 400 ◦C for 30 min in air. CdTe thin films obtained
were investigated for structural and optical properties. X-ray diffraction (XRD) data was collected using a

Rigaku D/Max-IIIC diffractometer with CuKα radiation over the range of 2θ = 20–70◦ at room temperature.

The morphological information was obtained by a JOEL JSM-6400 scanning electron microscope (SEM). The

absorption spectra of the films were measured by Perkin-Elmer Lambda 2SUV/Vis Spectrometer with 190–1100
nm wavelength range using non-polarized light.
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3. Results and discussion

Figure 1(a–c) show the X-ray diffraction spectra of CdTe thin films produced; as deposited on the cooled
substrate at -73 ◦C, annealed at 400 ◦C for 30 min in air without CdCl2 treatment and treated with CdCl2
and annealed at 400 ◦C for 30 min in air, respectively. X-ray diffraction studies showed that the as-deposited
film is polycrystalline in nature and belongs to the cubic phase with a strong preferred orientation along the
(111) direction together with a small peak due to Te precipitate at 2θ = 21.48◦ (Figure 1(a)). The appearance
of this additional small peak is consistent with the one in PDF 00-023-1000. Annealing at 400 ◦C results in a
decrease in the (111) peak intensity while the intensities of the (220), (311) and (331) peaks appeared. This
is an indication of certain degree of randomization in the film texture with annealing which results from the
preferential growth of (220), (311) and (331) grains in expense of (111) grain. The (111) peak positions for the
as-deposited film and the film annealed at 400 ◦C are 2θ = 23.80◦ and 23.72◦ , respectively corresponding to
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Figure 1. XRD diffraction spectra of CdTe thin films for (a) the as-deposited on the cooled substrate at -73 ◦C, (b)
annealed at 400 ◦C for 30 min in air and (c) treated with CdCl2 and annealed at 400 ◦C for 30 min in air.
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lattice parameter values of 0.647 nm and 0.649 nm. The values of lattice parameters for the films are consistent
with that of a powder sample (0.648 nm) [19]. The full width at half maximum (FWHM) of the cubic (111)

peaks were calculated from the data of Figure 1(a,b). It was found that the FWHM decreased from 0.170◦ to
0.153◦ as the sample annealed at 400 ◦C. This may indicate a slight improvement of the crystalline nature
of the film upon annealing while the structure remains still cubic. However, the peak due to Te precipitate
disappeared upon annealing.

On the contrary, the X-ray diffraction data of the sample treated with CdCl2 and annealed at 400 ◦C for
30 min in air (Figure 1(c)) shows a completely different pattern, indicating that the hexagonal phase appears

predominately in the pattern of the sample. However, some small peaks such as (311) and (331) related to
cubic phase are not disappeared entirely, meaning that cubic phase with a small amount still exists in the
sample. The diffraction lines at 23.72◦ , 25.58◦ , 39.24◦ and 52.58◦ are related with the (002), (101), (110) and

(202) planes of the crystalline CdTe hexagonal phase, respectively. Due to the proximity of peaks (111) and

(220) to the peak positions of (002) and (110), it is rather difficult to differentiate the cubic structure from the

hexagonal one. In our study, the interplaner distances for (111) and (002) were found to be 0.374 nm and 0.375

nm, respectively. These values are almost the same as those for CdTe in the literature [20-22].

The literature contains several reports about the phase purity of the CdTe films produced by different
techniques. It is reported that, like other CdX (X = S, Se) compounds, CdTe can exits in both cubic and
hexagonal structures, leading to different electronic properties. Thus, it is important to grow thin films with
a pure phase (either cubic or hexagonal) to obtain stable and better device performance. Lalitha et al. [23]
reported an XRD spectrum for the as-grown CdTe film consisting of peaks due to the cubic and hexagonal phases
whereas the CdCl2 -treated CdTe films presenting only cubic with a (111) preferred orientation, which is entirely

different from our results. The work of Li et al. [10] showed that their films deposited at room temperature
contained both the cubic and hexagonal phases. But, the CdCl2 treatment had created no substantial change
in the phase constituents. However, the work by Rusu et al. [13] showed that the films produced at room
temperature had only cubic phase and the post annealing at 350 ◦C left the sample still at cubic phase. It
should be noted that the CdTe thin films used in our study are produced at a lower substrate temperature
-73 ◦C compared with those mentioned above. The appearance of a small Te peak in Figure 1(a), namely
the existence of small Te precipitate might interact with CdCl2 during the annealing process, thus causing an
unstable hexagonal form for CdTe. However, when the sample containing this unstable hexagonal phase etched
in brom methanol, the surface returned to the original stable cubic phase removing the unstable hexagonal
phase completely.

The band gaps obtained from the transmission optical spectra were determined from the plots (αhν)2

against hν . Figure 2 shows the extrapolated band gap values for the as-deposited, without and with CdCl2/annealed
films as ∼1.48, ∼1.48 and ∼1.49 eV, respectively. As can be seen from these data, the Eg values of the as-
deposited film and the heat treated film without CdCl2 are the same, but it is worth nothing the sharpening
of the absorption edge upon annealing. However, the CdCl2 /annealing caused a slight change in the band gap
value approaching to ∼1.49 eV. The difference is within the experimental error in the method used.

Figure 3 shows the surface SEM patterns of films deposited at substrate temperature of -73 ◦C and
then annealed without and with CdCl2 at 400 ◦C, respectively. As can be seen from these data, the grain
size did not changed significantly upon annealing without using CdCl2 but now contain voids around the grain
boundaries. On the contrary, the grain size in the sample treated with CdCl2 increased significantly.
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Figure 2. Absorption spectra of CdTe thin films deposited at -73 ◦ C and annealed at 400 ◦C for 30 min in air with

and without CdCl2 /annealing treatment.
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Figure 3. SEM images of films for (a) the as-deposited at a substrate temperature of -73 ◦C, (b) the annealed at

400 ◦C for 30 min in air and (c) treated with CdCl2 and annealed at 400 ◦C for 30 min in air.

4. Conclusions

The XRD patterns reveal that the as-grown and annealed CdTe films were cubic. The texture is changed
from the fully (111) preferred orientation to a certain degree of randomization upon annealing. After the
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CdCl2 /annealing, the sample is transformed into a mixture of hexagonal and cubic phases; the hexagonal

phase being predominant phase. The grain size increased for the CdCl2 /annealed film. The optical band gap

values for the as-grown and CdCl2 /annealed films were found to be ∼1.48 eV and ∼1.49 eV, respectively.
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