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Abstract

Presented is a derivation of an analytical expression for the mode-coherence coefficients of uniform-

distributed wave propagating within different homogeneous media—as in the case of hyperbolic Gaussian

beams—and a simple method involving the superposition of two such beams is proposed. The results

obtained from this work are very applicable to study and analysis of Hermite-Gaussian beam propagation,

especially in the problems of radiation-matter interaction, and laser beam propagation such as employed in

free-space and fiber optical communications.
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1. Introduction

In 1978, Collett and Wolf predicted that Gaussian Schell-model (GSM) beams may have the same

directionality as a fully coherent laser beam in free space [1, 2], which was later confirmed experimentally

[3, 4]. It implies that full spatial coherence is not a necessary condition for highly directional light beams. Many

works have been carried out concerning the spreading of laser beams in atmospheric turbulence [5–8].

With decreasing availability of RF spectrum and the increasing demand for higher communications band-
widths, the terahertz laser communications bandwidths are seen as a viable augmentation of RF communications
capability. Yet, cloud cover effects can impact link availability. Among the key strategies to increase availability
and mitigate cloud cover effects is the global deployment of ground stations in atmospherically independent cells.
Yet with such a deployment, one needs to address the impact of the uplink laser beams on the flying public and
on space assets sensitive to laser radiation. Near damage threshold of human eye, the power densities on the
communications downlink are usually eye safe. Although the power densities of the uplink beacon required for
Earth orbiters to track the ground station can, depending on mission, be within eye-safe laser levels, this will
not be so when operations call for transmitting a beacon or commands to deep-space probes [9].
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The discovery of propagation-invariant beams naturally led to the idea of similar pulses or wave packets.
Solitons are, of course, well-known for waves propagating in nonlinear media where the nonlinearity serves to
counterbalance the effect of diffraction. Similarly (radial) changes in the index of refraction can be used to form
a waveguide that supports localized waves. In free space or in a linear medium, no such equities are available.
Periodically propagating waves are not strictly propagation-invariant although they avoid diffractive spreading
by returning to their initial pattern after a certain propagation distance or time. They are further allowed to
rotate in-between.

A systematic approach has been introduced for all periodically evolving pulsed waves for velocities
0< v < ∞ . Their spectral characteristics vary according to whether this velocity of propagation equals,
exceeds, or is below the speed of light.

Recently, we have found that, besides the equivalent Gaussian-Schell model beams, there also exist other
equivalent partially and fully coherent beams which may have the same directionality as a fully coherent laser
beam in free space and also in atmospheric turbulence, such as the equivalent partially and fully coherent
Hermite-Gaussian beams [10], and the equivalent partially and fully coherent Hermite-cosh-Gaussian beams

and cosh-Gaussian [11, 12].

Casperson et al. has presented a novel type of beam, Hermite–sinusiodal-Gaussian (HSG) beam [13-

15]. Among the family of Hermite–sinusiodal-Gaussian beams, the cosh-Gaussian beams are of much interest,

because their beam profiles are suitable for practical applications [13, 15]. The second order irradiance moments

definition has been used to investigate the beam parameters such as M2 -factor, the power in bucket (PIB), beam

width, curvature radius and kurtosis [16].

On the other hand, it was shown by Siegman [17, 18], Weber [19] and Du et al. [20, 21] that the

beam-propagation factor (M2 factor) and the mode coherence coefficients are very useful beam parameters for
characterizing various laser beams and their mode structures. In this letter, the beam-propagation factor and
the mode coherence coefficients of cosh-Gaussian beams were studied to propose a simple method for producing
cosh-Gaussian beams experimentally.

2. Model

The field distribution E(x , z) of two-dimensional cosh-Gaussian beams at the plane z = 0 is characterized

by [15]

E(x, 0) = exp
(
−x2

ω2
0

)
cosh (Ω0x) , (1)

where ω 0 is the waist width of the Gaussian amplitude distribution, Ω0 is the normalized parameter of cosh-
Gaussian beams, and cosh denotes the hyperbolic cosine function, which can be written as

cosh (θ) =
eθ + e−θ

2
. (2)

Substituting equation (2) into equation (1) yields

E(x, 0) =
exp

(
ω2

0Ω2
0

4

)
2

(
e−a + e−b

)
, (3)
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where

a =
x − ω2

0Ω2
0

2

ω2
0

; b =
x + ω2

0Ω2
0

2

ω2
0

.

An alternative interpretation of equation (3) is that a cosh-Gaussian beam can be regarded as a superposition

of two Gaussian beams with the same waist width and in phase, whose centers are located at (ω 2
0Ω0/2,0) and (-

ω 2
0Ω0/2,0) in the xz plane. Thus, cosh-Gaussian beams can be simply realized experimentally by superposition

of two decentered Gaussian beams. Furthermore, the most-general complex form of HSG mode can be obtained
by superposition of two of the generalized Hermite–Gaussian beams [13]. The intensity distribution of cosh-
Gaussian beams at the z=0 plane reads as

I(x, 0) = E(x, 0)E∗(x, 0), (4)

with the asterisk (*) denoting the complex conjugate.

Keeping in mind the definition of the second-moments of the variance σ 2
x in the spatial domain, and the

variance σ 2
k in the spatial-frequency domain [15], after performing the standard integral procedures (see, e.g.,

references [4] and [6]) with equations (3) and (4) taken into account, we have

σ2
x =

ω2
0

4

[
1 +

δ

1 + exp
(
− δ

2

)
]

(5)

σ2
k =

1
4π2ω2

0

[
1 +

δ exp
(
− δ

2

)
1 + exp

(
− δ

2

)
]

, (6)

where

δ = ω2
0Ω

2
0. (7)

Therefore the M2 factor of the cosh-Gaussian beams is obtained readily from equations (5) and (6) and
is given by

M2 = 4πσxσk , (8a)

M2 =

√
(1 − δ) e−δ + (2 − δ2) e−

δ
2 + δ + 1

1 + e−
δ
2

. (8b)

3. Results and discussion

Equation (8) indicates that the M2 factor of the cosh-Gaussian beams depends only on δ = ω 2
0Ω2

0 .

Figure 1 gives the variation of the M2 factor of a cosh-Gaussian beam versus δ , from which it turns out that

the M2 factor of the cosh-Gaussian beam decreases monotonically with δ (δ ≥0). In addition,M2 ≥1 and

reaches the minimum value 1 if δ = 0 (i.e., Ω0 = 0) in the limiting case of the Gaussian beam.
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Figure 1. Beam propagation factor M2 of a hyperbolic Gaussian beam (e.g., laser beam) as a function of δ u.

It is well known that the field distribution E(x , z) of light at the plane of z = 0 can be expanded into

a series of orthogonal basis modes ϕ m(x) [22], i.e.

E(x, 0) =
∑
m

cmϕm(x), (9)

where cm denotes the mode coefficients, m is the mode indices; and ϕ m(x) is the series of orthogonal basis
modes, for example, the Hermite-Gaussian modes of the form

ϕm(x) = Um exp
(
−α2x2

2

)
Hm(αx), (10)

where Um is the normalized factor, α is related to the waist width ω 0h of the basis Gaussian mode by [23]

α =
√

2
ω0h

. (11)

The unimportant phase factor is omitted in equation (10) for the sake of convenience.

Substituting equation (1) into equation (9), and using the orthogonality of the Hermite-Gaussian series,
we have

cm =

+∞∫
−∞

ϕ∗
m(x)e

− x2

ω2
0 cosh (Ω0x) dx. (12)

The direct combination of equations (10) and (12) leads to indivisible integral relation as

cm =

√ √
πv

α(2 + v)
exp

(
δ

2(1 + v)

) (
2 − v

4 + 2v

) m
2 1√

m!
Hm

(
vδ√

4 − v2

)
, m = even. (13)

Otherwise, cm =0 when m is odd, where

v = ω2
0α

2
0. (14)

118



NAJI

Equation (13) implies that cosh-Gaussian beams contain only even Hermite-Gaussian modes. Figure 2 shows
the analytical relation of the mode coefficient cm to the mode index m within the examined values of beam
propagation factor.
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Figure 2. The analytical relation of the mode coefficient cm to the mode index m within the examined values of beam

propagation factor M2 = 1 to 3.

4. Conclusion

A simple method has been proposed by which hyperbolic Gaussian beams can be realized experimentally

without the use of a sophisticated aperture. Both the M2 factor and the mode coherence coefficients of
hyperbolic Gaussian beams have been expressed in the closed form, which is suitable for use in applications
and provides a comprehensive characterization of hyperbolic Gaussian beam qualities such as beam invariance,
beam quality, mode structure, and correlation. Finally, it should be stressed that here the hyperbolic Gaussian
beams have been taken only as an illustrative example. The above approach and results have more generally
applicable advantages and can be used to study three-dimensional hyperbolic Gaussian beams those can be
obtained experimentally by superposition of two decentered Gaussian beams with the same width but dephased
by π .
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