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Abstract

In this study, heavy ion reactions of 6Li + (58 Ni, 28Si ,12C) and 7Li + 12 C are studied using

different bound state potentials, within the framework of the Distorted Wave Bourn Approximation (DWBA)

calculations. Woods-Saxon potential is expressed as the optical potential in the initial and final channels

together with a Coulomb potential. The calculations of the angular distributions are found to be in a good

agreement with the experimental data. The extracted spectroscopic factors are reasonable.
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1. Introduction

Heavy ion scattering and the scattering of nucleons from nuclei have been widely considered in the
last few years [1]. Elastic scattering is a basic process in nuclear collisions because it accompanies another
reaction mechanism, and a thorough understanding of elastic scattering is a prerequisite for a valid description
of nonelastic processes [2]. At energies near the Coulomb barrier usually it have been shown an anomalous
behavior of the energy dependence of the real and imaginary parts of the optical potential, known as the
threshold anomaly [3]. This anomaly shows up as a localized peak in the real part and the decreasing and

vanishing of the imaginary part of the potential in the neighborhood of the Coulomb barrier [4, 5]. The
decrease of the imaginary potential as one approaches the Coulomb barrier is due to the closing of the effective
open channels which can lead to absorption of flux from the elastic channel. Recently, extensive theoretical
calculations have been done to explain the resonant structures, which usually observed in heavy ion transfer
reaction, following the microscopic distorted wave Born approximation (DWBA) calculation [6, 7], where DWBA

was used to widely study in direct nuclear reactions [8]. For most cases the DWBA is one step process [9].

Therefore, several descriptions have been introduced to explain the general features of heavy-ion reactions [10].
The investigation of nuclear structure effects in the fusion cross section has deserved special attention in the
last few years. In the case of the study of sub-barrier fusion reactions, the standard models based on the
penetrability of one dimensional barriers determined by the ion-ion potential were systematically used [11].
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12C + 92Zr and 16O + 92 Zr systems have been studied using the fusion coupled-channel calculations.
At energies near the Coulomb barrier, calculations have been quite successful [12]. The elastic scattering for
46,50Ti(16O, 16O) systems investigated in the sub-Coulomb fusion of heavy-ions demand a careful investigation

of the reaction cross section and optical potentials near the Coulomb barrier [11]. Differential cross-sections

of reactions 24Mg(16O,16 O)24 Mg and 28 Si(16O,16O)28 Si can be found agreement with experimental data for
the whole angle region in both cases.

In the elastic scattering between 4N nuclei, such as the 24Mg(16 O,16O)24 Mg case, an uprising oscillatory

structure often appears in the differential cross-section at the backward angle region [13].

The (7 Li, 6He) reactions are considered a valuable spectroscopic tool because the shapes of their angular

distributions can be well reproduced by the distorted wave Born approximation (DWBA) [14]. The angular

distributions for low lying states of 16O produced in the 12C(6 Li, d)16 O α -transfer reaction at incident energy

48.28 MeV have been measured using a high energy resolution position sensitive detection system [15].

The present work considers the theory of heavy–ion induced reactions with particle transfer. These direct
transfer reactions are investigated using the exact finite-range DWBA calculations as a single-step process. The
optical model potential is taken to have real and imaginary Woods-Saxon form in the initial and final channels
plus the Coulomb potential. The calculated differential cross sections are fitted with the experimental data to
extract spectroscopic factors

2. Differential cross sections

In the present calculations, the explicit transition matrix element of the T (A ,C)R reaction with a

transferred particle x are evaluated in details following the DWBA calculations [16,17]. Therefore, the complete
reaction transition is taken to have the expression

Tfi =
∑

lj,l′j′

S(l, j)S∗(l′, j′) · 〈JCμC ; JRμR (J ′
xj′ (J, l′))|T ll′ |(JC μ JA μA ; JT μT (JX j(JC l))〉 , (1)

where S(l, j) and S∗(l′, j′) are the spectroscopic factors in the initial and final channels respectively; Ji and μ i

are the respective spin angular momenta of particle i and its magnetic projection on the z-component. In these
calculations, the standard Woods-Saxon forms [18] are used for the real and imaginary distorting potential in
the initial and final channels together with a Coulomb potential. The nucleus-nucleus potential is given as

V (r) = − V f(r, rv, av) − iWf (r, rw, aw) + V C(r) (2)

where f(r, rx, ax) is the Woods- Saxon form factor and is expressed as

f(r, rx, ax) =
[

1 + exp
(

r − Rx

ax

)]− 1

for x = v, w, c. (3)

Coulomb potential V C(r) is due to a uniform sphere of radius rC = 1.25 fm and is given as

V C(r) =

⎧⎨
⎩

ZiZj e2
(
3 − r2

/
R2

C

)
/2RC ; r ≤ RC

ZiZje
2
/
r ; r ≥ RC .

(4)

130



ASS’AD

In such calculations, the imaginary part of the optical potential is taken to have the form

W (r) =
[
i

(
w − 4wDaw

d

drw

)]
f (r, rw, aw) . (5)

In terms of the complete transition amplitude, the differential cross section for heavy ion reactions with particle
transfer is given as

dσ

dΩ
=

MAT MXR

(2π�2)2
kf

ki

1
(2 JA + 1) (2JR + 1)

∑
μA,μT
μR,μC

|Tfi|2, (6)

where Mij is the reduced mass of particles i and j ; the μ ’s are the magnetic quantum numbers; and Ki andKj

are the relative momenta in the initial and final channels respectively.

3. Numerical calculations and results

In the present calculations, the 6 Li projectile is assumed as a bound state of 58Ni, 28Si,12C at incident

energy 210 MeV and the 7Li projectile is assumed as a bound state of 12C at incident energy 132 MeV. In the
first set of the present calculations the particle-particle interactions of the bound states in the initial and final
channels are described in terms of double-Gaussian potentials; in the second set, it is described by the Yukawa
potential [19].

The Gaussian potentials has the form

V (r) = VRi exp
(
−r2

i

/
a2

Ri

)
+ VAi exp

(
−r2

i

/
a2

Ai

)
; i = 1, 2, (7)

where, VRi > 0 and VAi < 0 are the strengths of the repulsive and attractive terms respectively, while aRi and
aAi are their decay factors. These parameters are listed in Table 1. While the Yukawa potential has the form

Vij(rij) = V 0
ij

(
2 +

rij − (Ri + Rj)
a

)
e

−rij +Ri + Rj
a , (8)

where Ri and Rj are the radii of the ith and jth particles given by roA
1/3 , V 0

ij represents the interaction

strength given as

V 0
ij = [C(i)C(j)]

1
2 a Ri Rj

r2
0 (Ri + Rj)

. (9)

The parameter C(i) in equation (9) has the value

C(i) = A(i)

[
1 − Ks

(
Ni − Zi

Ai

)2
]

, (10)

with a similar expression introduced for the parameterC(j).

The different parameters of the interactions are given as r0 = 1.18 fm, a = 0.65 fm, A(i) = 21.17 MeV,

and the surface a symmetry constant Ks = 3.0, which are chosen to fit the static properties of nuclei [19]. The
necessary parameters of the optical potential are listed in Tables 2 and 3.
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Table 1. Parameters of the double Gaussian potential.

Reaction VR aR VA aA aHo

(MeV) (fm) (MeV) (fm) (fm)
6Li + 58Ni 209 1.30 -210 1.80 1.55
6Li + 28Si 209 1.20 -200 1.90 1.50
6Li + 12C 219 1.80 -210 1.40 1.50
7Li + 12C 209 1.70 -210 1.30 1.50

Table 2. Optical potential parameters used in the DWBA calculations.

Reaction V0 Rv av W0 Rw aw rc

(MeV) (fm) (fm) (MeV) (fm) (fm) (fm)
6Li +58Ni 174.5 1.136 0.907 32.0 1.607 0.806 1.5
6Li +28Si 176.5 1.3 0.7 32.9 1.7 0.9 1.4
6Li +12C 113.5 1.305 0.793 34.2 1.682 0.784 1.5
7Li +12C 132 1.6 0.960 31.5 1.607 0.806 1.25

Table 3. Extracted spectroscopic factors.

Reaction
Incident energy Excitation energy

Jπ Spectroscopic factors
(MeV) (MeV) Present Previous

6Li +58Ni 27.80 0.0 0+ 0.91 0.79
6Li + 28Si 36.26 0.0 0+ 0.94 0.78
6Li + 12C 27.75 0.0 0+ 0.78 0.74
7Li + 12C 26.23 0.0 0+ 0.82 0.79

The result obtained for the differential cross sections are shown in Figures 1–4 by solid curves (Gaussian

potential) and dashed lines (Yukawa potential) compared with the experimental data points. Generally, the
present calculations using Gaussian potential provide a substantially better description of the phase and
magnitude of the angular distributions than the Yukawa potential.

In comparison, using both Gaussian and Yukawa potentials, the angular distribution are found to be
in a good agreement with the experimental data in the forward region as shown in the figures. In addition,
calculations employing Gaussian potentials give an equivalent fit to the experimental data in the large angle
region as shown in Figures 1, 2, and 4 and also introduce a description better than those using Yukawa potentials.
Generally, these calculations grossly overestimate the cross-sections at the back-angle region as shown in Figure
3. By matching the present theoretical calculations of the differential cross-sections with the experimental data,
the spectroscopic factors in each reaction state are extracted as

S(l, j) =
1

NS

(2Ji + 1)
(2 J + 1)

(
dσ
dΩ

)
exp .(

dσ
dΩ

)
theor.

. (11)
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Figure 1. Differential cross-section of the 58 Ni (6 Li,
6 Li) 58 Ni reaction at 210 MeV incident energy leading

to 0.0 58Ni excited state. The solid curve denotes the

Gaussian potential. The dotted line denotes the Yukawa

potential and the dots are the experimental data taken

from reference [20].

Figure 2. The differential cross-section of the 28 Si (6Li,
6Li) 28 Si reaction at 210 MeV incident energy leading

to 0.0 28Si excited state. The solid curve denotes the

Gaussian potential. The dotted line denotes the Yukawa

potential and the dots are the experimental data taken

from reference [20].
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Figure 3. The differential cross-section of the 12 C (6 Li,
6 Li) 12 C reaction at 210 MeV incident energy leading

to 0.0 12 C excited state. The solid curve denotes the

Gaussian potential. The dotted line denotes the Yukawa

potential and the dots are the experimental data taken

from reference [21].

Figure 4. The differential cross-section of the 12C (7Li,
7Li) 12 C reaction at 132 MeV incident energy leading

to 0.0 12 C excited state. The solid curve denotes the

Gaussian potential. The dotted line denotes the Yukawa

potential and the dots are the experimental data taken

from reference [20].
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4. Discussion and conclusion

In the present work, different heavy-ion transfer reactions have been studied within the framework of the
DWBA calculations using optical potential model. The calculated angular distributions using both of Gaussian
potentials and Yukawa potentials are found to be in a good agreement with the experimental data in the
forward angle region. In general, although the calculated forward cross-sections are found to be equivalent and
close enough in such cases, the using of the Gaussian potentials introduces a substantially better description
of the large angle data than using of Yukawa potentials. Therefore, the present analysis exhibits the Gaussian
potentials term to account for the phase and amplitude of the angular distributions as well as the magnitude
of the cross-sections at large angular range.

We conclude that the present one-step DWBA process, using the Woods-Saxon form as optical potential,
and the double Gaussian potential as bound states, exhibit reasonably good fits to the experimental data and
satisfactory reproduce both of the magnitude and shapes of the differential cross-sections in the forward and
large angle regions.
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