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doi:10.3906/fiz-0911-47

Electrons trajectories in electromagnetically pumped

free electron laser with a constant reverse guide

magnetic field

Ahmad OMAR
Physics Department, Faculty of Arts and Sciences, Arab American University

P.O. Box (240), Jenin, West Bank-PALESTINE
e-mail: ahmad.omar@aauj.edu

Received: 29.11.2009

Abstract

An exact solution to the quartic equation in the wiggler frequency ωw , which represents the dispersion

relation for this system, is obtained. The effects of the frequency of the wiggler ωw on the electron’s velocities

(v|| and vw) are investigated. The regions of interest for the allowed wiggler frequency ωw for both group

I and group II electron trajectories are discussed.
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1. Introduction

Free-Electron Lasers (FEL) represent an incredible departure from classical lasers, where they provide

widely tunable, highly intense, ultrashort laser pulse in any part of the electromagnetic spectrum [1–4].

Several studies have been reported that investigated trajectories in different electromagnetic wiggler
models. An exact solution to the relativistic equation of motion for a charged particle in a constant magnetic field
and a transverse electromagnetic wave propagating along the field had been found by Roberts and Buchsbaum
[5]. Freund et al. studied the interaction between a relativistic electron beam and an electromagnetic wiggler

in the second stage [6]. We have investigated the relation between the energy of a system consisting of a large
amplitude electromagnetic wiggler FEL in the presence of a constant axial guide magnetic field and both the
parallel and perpendicular components of canonical momentum [7]. Hiddleston et al. studied the equations of

motion for the electromagnetically pumped FEL with an axial electrostatic field [8]. Bourdier and Gond studied

the dynamics of a charged particle in both circularly and linearly polarized traveling electromagnetic wave [9,

10]. A theory on a free-electron laser with electromagnetic wiggler and ion-channel guiding have been developed
by Esmaeilzadeh et al. The electron trajectories for this system are found and the stability of orbits is studied
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[11]. Electromagnetic wiggler free electron laser was constructed and operated experimentally [12, 13]. The
effects of the reverse guide magnetic field have been investigated for different free electron lasers configurations.
Tsui, K. H. studied a system consisting of circularly polarized external wiggler with a reverse guide field by
introducing the self-fields of the electron beam. He found that the competition between the self fields and
the wiggler field plus the action of the guide field are responsible for a new reverse guide field singularity [14].
The behavior of electron beam in combined self generated field and a reversed axial-guide field in the tapered
helical wigglers has been studied by S. K. Nam, et al. They reported that the electron beam loss is reduced by
optimizing the magnetic field strength and tapering the parameter of the reversed axial guide field [15]. Conde
and Bekefi reported a new regime of free electron laser operation using a helical wiggler field and a reversed
axial guide magnetic field. The orientation of the axial field is such as to oppose the rotation of the electrons
imparted by the helical field. The 33.3 GHz electron laser amplifier is driven by a mildly relativistic electron
beam (750 kV, 300 A, 300 ns) and generates 61 MW of radiation with a 27% conversion efficiency. The results
are compared with those obtained when the axial guide field is in its conventional orientation where considerable
loss of power and efficiency is observed [16]. G. Zhang et al. studied the FEL amplifier performance with a
reversed axial guide field theoretically and numerically. They found that group I orbits can be reproduced by
assuming an anomalously large emittance, while group II results are not consistent with the single frequency
model [17]. Xiao-jian Shu studied the single-particle trajectories of relativistic electrons in FEL with a reversed
axial guide magnetic field. He reported that when the cyclotron wavelength approaches the wiggler period,
there is a beat between two rotations, which makes a large dip occur in the radiation power [18]. Bazylev et al.
studied the electron trajectories for a FEL configuration in the presence of a reversed axial guide magnetic field
analytically. He considered two types of electron trajectories close to antiresonance. One belongs to a linearly
polarized motion and leads to a moderate coupling with radiation field [19, 20].

A previous study on an electromagnetic wiggler FEL with a constant forward guide magnetic field had
been reported by H. P. Freund et al. [6]. Numerical solution for the dispersion relation have been investigated.

In Section II we investigate the electrons trajectories for the same wiggler given in [6], but with constant
reverse guide magnetic field. To study the effects of the wiggler field frequency ωw on the electrons velocities
(v|| and vw) for our system we solved the quartic equation in the wiggler frequency ωw for this system exactly.

Section III concentrates on studying the analytical results we have derived numerically in Section II. Dependence
of the parallel and transverse components of the electrons velocities (v|| and vw) on wiggler frequency ωw is

investigated.

2. Formulation of the problem

A system consisting of a uniform reverse axial magnetic field, −B0 êz , and a backward propagating
electromagnetic wave described by

Bw = Bw [ êx cos (kwz + ωwt) + êy sin (kwz + ωwt) ] (2.1)

Ew =
ωw

kwc
Bw [ − êx sin (kwz + ωwt) + êy cos (kwz + ωwt)] (2.2)

where Bw is the amplitude of the wiggler magnetic field, B0 is the guide magnetic field amplitude, while kw is
the wiggler field wave vector and ωw is the corresponding angular frequency.
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The relativistic equations of motion for this system are

dP
dt

=
d

dt
(mγ v) = −e

[
Ew +

v
c

× (B0 + Bw)
]

(2.3)

and
dγ

dt
= − e

mc2
v · Ew, (2.4)

where P is electron momentum, m is electrons mass, v is electron velocity, e is electron charge, c is the velocity
of light, and γ is the relativistic factor. To simplify the analysis we will introduce the following set of basis
vectors which are rotating with the wiggler

ê1 = êx cos (kwz + ωwt) + êy sin (kwz + ωwt) (2.5a)

ê2 = − êx sin (kwz + ωwt) + êy cos (kwz + ωwt) (2.5b)

ê3 = êz. (2.5c)

So, the velocity of the electron in this wiggler frame of reference can be written as

v = v1 ê1 + v2 ê2 + v3ê3. (2.6)

The equations of motion for this system are given in the Appendix. Steady state orbits are found for constant

energy (γ = constant). This implies that v2 =0 and dv1
dt

= dv3
dt

= 0. If we define v1 = vw and v3 = v||,

equation (2.6) becomes

v0 = vw ê1 + v‖ ê3 , (2.7)

where the set of the steady state trajectory equations are given by

vw = −Ωw (ωw + kw v||)

kw [Ω0+γ (ωw + kw v||)] (2.8)

and
v2
||

c2
+

v2
w

c2
= 1 − 1

γ2
(2.9)

where

Ω0,w =
e B0,w

mc
.

Here, Ω0 is the cyclotron frequency of the guide magnetic field, and Ωw is the cyclotron frequency of the wiggler
field.

To analyze the effects of frequency ωw and wave vector of the wiggler kw on the electrons trajectories,
we will use the following Maxwell’s Equation:

[
∂2

∂z2
− 1

c2

∂2

∂t2

]
Aw =

4π

c
n e vw, (2.10)
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where Aw is the wiggler vector potential given by

Aw = − Bw

kw
[ êx cos (kwz + ωwt) + êy sin (kwz + ωwt) ] . (2.11)

Substituting equation (2.8) for vw and equation (2.12) for the vector potential Aw in equation (2.10) results
in the dispersion relation

ω2
w − c2 k2

w − ω2
b

(
ωw + kw v||

)
[
Ω0 + γ

(
ωw + kw v||

)] = 0. (2.12)

Here, ω2
b = 4π e2 nb

m is the plasma frequency and nb is the bulk density of the electron’s beam.

To show the dependency of the orbital velocities (v|| and vw) on the wiggler frequency ωw , we merged

equations (2.8), (2.9) and (2.12) so that we have the following quartic equation in ωw in normalized (dimen-

sionless) form:

ω4
w − 2ω2

w +
ω4

b

Ω2
w

(
v2
|| − 1 +

1
γ2

)
+ 1 = 0. (2.13)

In the above, we introduced the following set of normalized quantities:

v||

c
→ v|| ,

vw

c
→ vw ,

ωw

kw c
→ ωw ,

Ωw

γ0 kw c
→ Ωw ,

Ω0

γ0 kw c
→ Ω0 ,

ωb

γ
1
2
0 kw c

→ ωb. (2.14)

This fourth degree polynomial equation (2.13) has the following set of exact analytical solutions:

ωw1 = ± √
α1 (2.15)

ωw2 = ± √
α2 (2.16)

where

α1 = 1 +
√

β (2.17)

α2 = 1 −
√

β (2.18)

and

β =
ω4

b

Ω2
w

(
1 − v2

|| −
1
γ2

)
. (2.19)

3. Results

We conclude from Equation (2.8) that the usage of the reverse axial guide magnetic field results in a
reduction in the wiggler velocity compared to that without a guide magnetic field. This ends with a decrease in
the linearized gain related to the expected values for group I and II [4]. Also, there is no resonant enhancement
in the wiggler velocity if the Larmor period belongs to the axial reverse field is comparable to the wiggler
period. Previous studies concluded that that the inhomogeneity in the wiggler field introduces a sinusoidal
driving term to the electron trajectories [4]. The inhomogeneity of the wiggler field will not affect the beam
transport compared to Group I and II orbital instabilities appeared when the axial guide magnetic field is
pointed in the forward direction with respect to the wiggler field.
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Since we are using a backward propagating electromagnetic wiggler field, the analysis is concentrated on
positive wiggler frequencies. This reduces the values of ωw from four to just two only. Equations (2.15) and

(2.16) restrict the values of β to β ≥ 0 which put un upper limit on the value of the normalized parallel velocity

of the beam v|| ≤
√ (

1 − 1
γ2

)
. Also, the values of α1 and α2 are restricted to α1 ≥ 1 and 0 < α2 ≤ 1.

These values for α1 and α2 constraint the allowed range of ωw1 and ωw2 to ωw1 ≥ 1 and 0 < ωw2 ≤ 1,
where ωw1 belongs to group I trajectories, while ωw2 belongs to group II trajectories.

In addition to our exact results we have obtained in section II and presented by equations (2.15) and

(2.16), we show these results numerically. In Figure 1 we show the dependence of the parallel particle’s velocity
V|| on the wiggler field angular frequency ωw . The range of the allowed values for both group I and group II

orbits are shown. There is an upper limit on the axial velocity V|| = 0.98 when the angular wiggler frequency

ωw approaches 1 for both group I and group II orbits. The plot shows that the axial velocity V || increases with

respect to the wiggler frequency ωw for group II orbits, while it decreases with respect to the wiggler frequency
ωw for group I orbits. So, we can adjust the angular wiggler frequency ωw to reach the desired axial velocity
V || .

In Figure 2 is shown the relation between the electron wiggler velocity vw and the angular frequency ωw ,
clarifying the linear dependence for both group I and group II. The specific range of the wiggler field angular
frequency ωw is shown in the figure for both group (I) and group (II) orbits.
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Figure 1. The axial electron’s velocity V || as a func-

tion of the wiggler field frequency ωw . The normalized

parameters are γ0 = 3.5, ωb = 0.1, ωw = 0.05.

Figure 2. The wiggler electron’s velocity vw as a func-

tion of the wiggler field frequency ωw . The normalized

parameters are γ0 = 3.5, ωb = 0.1, ωw = 0.05.

To investigate the effect of the reverse guide magnetic field B0 (included in the reverse guide magnetic

field cyclotron frequency Ω0) on the axial velocity of the electrons, V|| , we rearrange equation (2.8) and rewrite
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it in the normalized form

Ω01,02 = −
(
ωw1,w2 + v||

) (
Ωw

γ0 vw
+ 1

)
. (3.1)

The variation of the axial electron velocity v|| with respect to the reverse guide magnetic field frequency Ω0 is

shown for group I orbits, which are characterized by ωw1 ≥ 1 in Figure 3. The lower bound imposed on the
allowed values for the reverse guide magnetic field frequency Ω0 for group I orbits is limited to Ω0 > -1.68.

Figure 4 shows the variation of the axial electron velocity V || with respect to the reverse guide magnetic

field frequency Ω0 for group II orbits which are characterized by 0 < ωw2 ≤ 1. The allowed values for the
reverse guide magnetic field frequency Ω0 for group II orbits are restricted to −3 < Ω0 < -0.94.
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Figure 3. The axial electron’s velocity V || as a function

of the reverse axial guide magnetic field frequency Ω0 for

group I orbits. The normalized parameters are γ0 = 3.5,

ωb = 0.1, ωw = 0.05.

Figure 4. The axial electron’s velocity V || as a function

of the reverse axial guide magnetic field frequency Ω0 for

group II orbits. The normalized parameters are γ0 = 3.5,

ωb = 0.1, ωw = 0.05.

Our results in Figure 3 and Figure 4 lead to the same results found for the forward guide magnetic field
system investigated in [6] if we substitute -Ω0 instead of Ω0 in the previous analysis.

By tuning the wiggler frequency ωw, we plot the variation of the electrons’ parallel velocity V|| with

respect to the electrons’ wiggler velocity vw in Figure 5.

Figure 5 shows that selecting a higher axial velocity constraints the wiggler velocity to small values for
both groups. The obtained results are helpful in obtaining a collimated electron’s beam and limiting off axis
effects.
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4. Concluding remarks

In conclusion, we derived an exact analytical solution for the dispersion relation of our system. The
effect of wiggler frequency ωw on the behavior of the electrons trajectories for both group I and group II orbits
have been discussed. We obtained the suitable values of the wiggler field frequency ωw for group I and group
II analytically, and show it numerically in Figure 1 and Figure 2, respectively. Our results concerning the
relation between the axial electron velocity and the reverse axial magnetic field show identical behavior when
transformed from reverse to forward constant guide magnetic field (see Figure 6) compared to the numerical

analysis reported by Freund et al. [6].
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Figure 5. The axial electron’s velocity V || as a function

of the wiggler electron’s velocityvw for both group I and

II orbits. The normalized parameters are γ0 = 3.5, ωb =

0.1, ωw = 0.05.

Figure 6. The axial electron’s velocity V || as a function

of the forward axial guide magnetic field frequency Ω0 for

group I & group II orbits. The normalized parameters are

γ0 = 3.5, ωb = 0.1, ωw = 0.05.

Appendix

Rewriting equations (2.3) and (2.4) in the reference frame rotating with the beam, the equations of
motion for the electrons will be

v̇1 =
1
γ

[
Ω0 + γ (ωw + kwv3) +

ωwΩw

ckw

v1

c

]
v2 (A1)

v̇2 = − 1
γ

[
[Ω0 + γ (ωw + kwv3)] v1 + Ωw

[
v3 +

ωw

kw

]
− ωw

ckw
Ωw

v2
2

c

]
(A2)
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v̇3 =
1
γ

Ωw

[
1 +

ωw

ckw

v3

c

]
v2 (A3)

γ̇ = − ωw

c2kw
Ωwv2, (A4)

where Ω0,w =
∣∣∣ eB0,w

mc

∣∣∣ .
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