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Abstract

An effort has been made to obtain the anharmonic properties of potassium halides starting from primary

physical parameters viz. nearest neighbor distance and hardness parameters assuming long- and short- range

potentials at elevated temperatures. The elastic energy density for a deformed crystal can be expanded as

power series of strains for obtaining coefficients of quadratic, cubic and quartic terms which are known as

the second, third and fourth order elastic constants respectively. When the values of the higher order elastic

constants are known for a crystal, many of the anharmonic properties of the crystal can be treated within the

limit of the continuum approximation in a quantitative manner. In this study, higher order elastic constants

are computed up to their melting temperature for potassium halides. The first order pressure derivatives

of second and third order elastic constants, the second order pressure derivatives of second order elastic

constants and partial contractions are also evaluated at different temperatures for these substances. The

results thus obtained are compared with experimental data and found in well agreement with present values.

Key Words: Elastic energy density, elastic constants, pressure derivatives

PACS Nos.: 61.50.Ah, 62.20.Dc, 43.25.Dc

1. Introduction

In the present decade, considerable interest has been taken in investigation of anharmonic properties of
materials of various kinds [1–4]. Many workers have contributed to this field through their experimental and
theoretical work. Several efforts have been made in the study of physical and anharmonic properties of solids
of different types [5–10] utilizing different physical conditions and using several techniques. Some interesting
results have been presented by several investigators while studying the anharmonic properties of the substances
possessing various crystal structures. Some have studied temperature variation of anharmonic properties of
mixed alkali halides and cyanides [11], of a few alkali cyanides, of rare gas materials [12], of alkali halides [10,

11, 13] using ultrasonic [14–15], theoretical [6] and Brillouin scattering [16] methods. No complete experimental
or theoretical effort has been made so for in obtaining the temperature variation of anharmonic properties
such as higher order elastic constants and their pressure derivatives of materials possessing different crystal
structures.
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In this work, a theory for obtaining anharmonic properties such as higher order elastic constants of
materials which possess face centered cubic crystal structure has been developed starting from primary physical
parameters viz. nearest neighbor distance and hardness parameter using long- and short- range potentials. The
elastic energy density for a deformed crystal can be expanded as a power series of strains using Taylor’s series
expansion. The coefficients of quadratic, cubic and quartic terms are known as the second, third and fourth
order elastic constants (SOECs, TOECs and FOECs) respectively. When the values of these elastic constants of
crystals are known, many of the anharmonic properties of the substances can be treated within the limit of the
continuum approximation in a quantitative manner. Several physical properties and crystal anharmonicities
such as thermal expansion, specific heat at higher temperature, temperature variation of acoustic velocity
and attenuation, the first order pressure derivatives (FOPDs) of SOECs, Grüneisen numbers and temperature
derivatives of SOECs are directly related to SOECs and TOECs. While discussing higher order anharmonicities
such as the FOPDs of TOECs, the second order pressure derivatives (SOPDs) of SOECs, partial contraction
and deformation of crystals under large forces, the FOECs are to be considered extensively.

The present work is concerned with the formulation to evaluate the second, third and fourth order elastic
constants, the FOPDs of the SOECs and TOECs and the SOPDs of SOECs and the partial contractions; using
long-and short- range potentials starting from the nearest neighbor distance and hardness parameter. Section
2 deals with the derivation of the theory. In Section 3, the theory is tested for potassium halides. The results
thus obtained are widely discussed in Section 4.

2. Formulation

The elastic energy density for a crystal [17, 18] of a cubic symmetry can be expanded up to quartic terms
as shown below:
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Here, Cijkl , Cijklmn and Cijklmnpq are the SOECs, TOECs and FOECs in tensorial form; xij are the
Lagrangian strain components; CIJ , CIJK and CIJKL are the SOECs, TOECs and FOECs in Brügger’s
definition and Voigt notations.

The SOECs, TOECs and FOECs are

Cijkl = CIJ = (∂2U/∂xij∂xkl)x=0Cijklmn = CIJK = (∂3U/∂xij∂xkl∂xmn)x=0,

and
Cijklmnpq = CIJKL = (∂4U/∂xij∂xkl∂xmn∂xpq)x=0. (2)

The free energy density [19, 20] of a crystal at a finite temperature T is

UTotal = U◦ + Uvib

Uvib =
KT

NVC

3sN∑
i=1

ln 2 sinh(�ωi/KBT ), (3)

where U◦ is the internal energy per unit volume of the crystal when all ions are at rest on their lattice points,

Uvib is the vibrational free energy, VC is the volume of the primitive cell, N is the number of the primitive
cells in the crystal and s is the number of ions in the elementary cell. Other notations used in this equation
have their usual meanings.

The elastic constants each have two terms as follows:

CIJ = C0
IJ + Cvib

IJ , CIJK = C0
IJK + Cvib

IJK, and CIJKL = C0
IJKL + Cvib

IJKL. (4)

The first part is the strain derivative of the internal energy Uo and is known as the “static” elastic constant.

The second part is the strain derivative of the vibrational free energy Uvib and is called the “vibrational” elastic
constant. The superscript “0” has been introduced to emphasize that the static elastic constants correspond to
temperature T = 0 K.

The energy density of the non- deformed crystal is expressed as:

U0 =
[
1
2
VC

] s∑
v=1

∑
|m�=o

u �=v |
Quv (Rmo

uv ) =
∑′ Quv(R)

2VC
. (5)

Here, Rmo
uv is the distance between the vth ion in the oth cell and the uth ion in the mth cell and Quv is

the interaction potential between the ions. The indices (v , o) and (u , m) are sometimes dropped when no
confusion occurs. One assumes that Quv is the sum of the long-range Coulomb and the short-range Börn-Mayer
[21] potentials:

Quv(r0) = ±
(

e2

r0

)
+ A exp

(
−r0

q

)
. (6)

Here, e is the electric charge, the sign ± applies to like and unlike ions, respectively, r0 is the nearest-neighbor
distance, q is hardness parameter and A is

A =
−0.29126q e2

r2
0

exp
(
−r0

q

)
+ 2

√
2 exp

(
−r0

√
2

q

) (7)
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It is assumed that the crystal is deformed homogeneously. When the crystal is deformed homogeneously, the
distance between ions (v , o) and (u , m) in the deformed and non- deformed states, Rmo

uv and rmo
uv , are related

to the Lagrangian strains xij via

(Rmo
uv )2 − (rmo

uv )2 = 2Y mo
uvi Y

mo
uvj xij = 2Zmo

uv , (8)

where Y mo
uvi is the ith Cartesian component of the vector rmo

uv The definition of the quantity Zmo
uv is as expressed

in equation (8). The internal energy Uo given by equation (5) can be expanded in terms of Zmo
uv , which will

yield quadratic, cubic and quartic terms as given below:
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Here, is defined the operator D ≡ d
RdR

.

With reference to equations (3) and (4), and comparison of equations (1) and (9), one may obtain the
static elastic constants presented in Table 1. For a central force model, there are only two independent SOECs,
three independent TOECs and four independent FOECs at absolute zero temperature. As in the case of the
internal energy U0 , the vibrational free energy is also expanded in terms of strains, the quadratic, cubic and
quartic terms are as below:

U2 = [1/Vc2!]
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Here, the abbreviationsZm′o
u′v′ → Z′

[
d

Rm′o
u′v′dRm′o

u′v′

]
→ D′ , etc., are used. On comparison of equations (1) and (10),

one determines the vibrational elastic constants. The prime marks in the summations
∑′ ,

∑′′ etc., denote
summation over all lattice points except m = 0, u = v .
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Table 1. Expression for the SOECs, TOECs and FOECs at 0 K for potassium halides.

C0
11 = -1.56933G + G1 + 2G2

C0
12 = C0

44 = 0.347775G + G2

C0
111 = 10.2639G – G3 – 2G4

C0
112 = C0

166 = 1.208625G – G4

C0
123 = C0

144 = C0
456 = 0.678375G

C0
1111 = -80.71455G+ G5 + 2G6

C0
1112 = C0

1155 = 4.43205G + G6

C0
1122 = C0

1266 = C0
4444 = 5.615925G + G6

C0
1123 = C0

1144 = C0
1255 = C0

1456 = C0
4455 = -1.584975G

where, G = e2/r4
0, G1 = (1/r0 + 1/q)Q (r0)/ qr0

G2 = (
√

g/2r0 + 1/q)Q (r0
√

g)/qr0

G3 = (3/r2
0 + 3/qr0 + 1/q2)Q (r0)/q

G4 = (3
√

g/r2
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√
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√
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0 + 6/q2r0 + 1/q3)r0Q(r0)/q

G6 = (15
√

g/4r3
0 + 15/2qr2

0 + 3
√
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√

2)/2q

Vibrational contributions to SOECs, TOECs and FOECs are shown in Table 2. These are shown as a
combination of gn ’S and Fn ’S which are evaluated conveniently by taking crystals symmetry [22] into account
and the expressions for gn and Fn are tabulated in Tables 3 and 4. By adding the vibrational elastic constants
to the static elastic constants, one may get SOECs, TOECs and FOECs at any temperature for monovalent fcc
crystals.

Table 2. Expressions for Vibrational Contribution to the SOECs, TOECs and FOECs for potassium halides.

Cvib
11 = g1F

2
1 + g1F2

Cvib
12 = g2F

2
1 + g1F5

Cvib
44 = g1F5

Cvib
111 = g3F

3
1 + g2F2F1 + g1F3

Cvib
112 = g1F

3
1 + g2F1(2F5 + F2) + g1F6

Cvib
123 = g3F

3
1 + 3 g2F1F5

Cvib
144 = g2F1F5

Cvib
166 = g2F1F5 + g1F6

Cvib
456 =0

Cvib
1111 = g4F

4
1 + 6g3F

2
1 F2 + 3g2F

2
2 + 4g2F1F3 + g1F4

Cvib
1456 =0

Cvib
1112 = g4F

4
1 + 3g3F

2
1 (F5 + F2) + 3g2F5F2 + g2F1(3F6 + F3) + g1F7

Cvib
1122 = g4F

4
1 + 2g3F

2
1 (2F5 + F2) + g2 (2F 2

5 + F 2
2 ) + 4g2F1F2 + g1F7

Cvib
1123 = g4F

4
1 + g3F

2
1 (5F5 + F2) + g2F1 (2F5 + F2 ) + 2g2F1F6

Cvib
1144 = g3F

2
1 F5 + g2F5F2

Cvib
4444 = 3 g2F

2
5 + g2F7

Cvib
1155 = g3F

2
1 F5 + g2F5F2 + 2g2F1F6 + g1F7

Cvib
4455 = g3F

2
5

Cvib
1255 = g3F

2
1 F5 + g2F

2
5 + g2F1F6

Cvib
1266 = g3F

2
1 F5 + g2F

2
5 + 2g2F1F6 + g1F7
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Table 3. Expression for gn ’S for potassium halides.

g1 = g0S;
g2 = g0[(X/S1) + S]/2;
g0 = ω0/8r3

0;
g3 = g0[(2X2S/3S1) + (X/S1) + S]/48;
X = gω0 / 2KT;
g4 = -g0 [(X3S2/3S1) + (X3/6S2

1) + (X2S/S1) + (5X/4S1) + (5S/4)]/144;
ω0 = (1/M+ + 1/M−)/qr0F0;
S = Coth X; S1 = Sinh2X.

Table 4. Expression for Fn ’s for potassium halides.

F0 = 1/[(q0 – 2)(Q(r0) + 2(q0 –
√

g)Q(r0
√

g)
q0 = r0/q;
F1 = 2[(2 + 2q0 – q2

0)Q(r0) + 2 (
√

g + 2q0 –
√

gq2
0)Q(r0

√
g)]F0;

F2 = 2( - 6 – 6q0 – q2
0 + q3

0)Q (r0)F0 + 2F5;
F3 = 2( - 30 – 30q0 – 9q2

0 + q3
0 – q4

0)Q (r0)F0 + 2F6;
F4 = 2( - 210 – 210q0 – 75q2

0 - 5q3
0 + 4q4

0 + q5
0)Q (r0)F0 + 2F7;

F5 = ( - 3
√
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√
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√
2 q4
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0 ]Q (r0

√
g)F0;

The FOPDs of SOECs are concerned with SOECs and TOECs. The FOPDs of TOECs and SOPDs of
SOECs are directly related to the SOECs, TOECs and FOECs. The Partial contractions are mere combination
of FOECs. The expressions for the FOPDs and SOPDs of SOECs and the FOPDs of TOECs [23, 24], partial

contractions for monovalent fcc solids [25, 26] are given in Tables 5 and 6.

Table 5. Expression for the FOPDs of the SOECs and TOECs for potassium halides.

dC11/dP = (C11 + QQ + C111 + C112)C0;CQ = C11 + 2C12

dC12/dP = −( - C11 + C12 + C123 + 2C112)C0; C0 = 1/CQ;
dC44/dP = −(CQ + C44 + C144 + 2C166)C0;
dC111/dP = −(−3CQ + 3C111 + C1111 + 2C1112)C0;
dC112/dP = −(CQ + 3C112 + C1112 + C1122 + C1123)C0;
dC113/dP = −(−CQ + 3C113 + 3C1123)C0;
dC144/dP = −(CQ + 3C144 + C1144 + 2C1244)C0;
dC166/dP = −(−CQ + 3C166 + C1166 + 2C1244)C0;
dC456/dP = −(−CQ + 3C456 + 3C1456)C0;

Table 6. Expression for the SOPDs of the SOECs and for Partial Contraction of the FOECs.

d2C11/dP 2 = [(1 + 3CP )C11 + (4 + 3CP )(C111 + 2C112) + C1111 + 4C1112 + 2C1122 + 2C1123] C02;
d2C12/dP 2 = [( 1 + 3CP )C12 + (4 + 3CP )(2C112 + C123) + 2C1122 + 5C1123]C02;
d2C44/dP 2 = [(1 + 3CP )C44 + (4 + 3CP )(C144 + 2C166) + C1144 + 2C1166 + 4C1244 + 2C1266] C02;
CP = (4C11 + C111 + 6C112 + 2C123)C0;
Y11 = C1111 + 4C1112 + 2C1122 + 2C1123;
Y12 = 2C1112 + 2C1122 + 5C1123;
Y44 = C1144 + 2C1166 + 4C1244 + 2C1266.
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3. Evaluation

Extensive efforts have been committed by the theoretical workers to study the attention-grabbing features
of materials [27–31]. The detailed study of formulation is given in the preceding Section 2. The expressions for
different elastic constants and pressure derivatives of the potassium halides are shown in Tables 1–6. Using the
concept of nearest-neighbour distance and hardness parameter [6], the elastic constants and pressure derivatives

for potassium halides are evaluated at different temperatures (from 100 K to up to their melting points [32];

given in Tables 7) using the expression of Tables 1–6 and shown in Figures 1–15. The values of SOECs, TOECs,
FOECs, FOPDs and SOPDs of SOECs and FOPDs of TOECs at 0 K and at room temperature for these
crystals are given in Table 7–11. The experimental and theoretical data are also given, wherever possible, for
comparison. The whole evaluation is based on the assumption that the fcc crystal structure of the material does
not change when temperature varies up to their melting point. The values of the nearest neighbor distance (r0)

and hardness parameter (q) [6, 32, 33] are given in Table 7. Thermal expansion coefficients (α) [15, 31–33] for

different solids are taken into account as r = r0 (1 + αT), where α = A1 + A2 T + A3T
2 + A4T

3 + A5T
4

(for KI, KCl, KBr). Equations for α , are computed using curve fitting and A1 , A2 , A3 ,A4 , A5 are shown in
Table 12.

Table 7. The nearest neighbors distance (r0) , hardness parameter (q) (10−10 m), melting points and the SOECs and

TOECs in 1010 Newton/m2 at 0 K. Comparison data taken from A. Cox et al, J. Phys C, 15 (1982) 4473. (Experimental

values are given in bold.)

Crystal Melting
Point, K

r0 q C0
11 C0

44 C0
111 C0

112 C0
123

KF 1153 2.6568 0.278 6.74 1.86
1.28
1.34

−113.77 −7.55 3.14

KCl 1063 3.1150 0.296 4.28 0.95
0.81
0.66

−76.61 −3.79 1.66

KBr 1003 3.2580 0.305 3.68 0.79
0.69
0.52

−66.37 −3.15 1.38

KI 996 3.4840 0.319 2.92 0.60
0.58
0.37

−53.51 −2.38 1.06

4. Results and discussions

A literature survey shows that, at present time, several efforts have been made by the experimental and
theoretical workers to study the motivating features of these solids, such as anharmonic effects, higher order
elastic constants, pressure derivatives and phonon-induced phase transition etc. in elevated temperature re-

gion. The SOECs and TOECs in 1010 N/m2 at 0 K for halides of potassium are shown in Table 7 along with
the experimental values reported by other workers. For a cubic crystal there are three independent second or-

der elastic constants at absolute zero namely C0
11 , C0

12 and C0
44 . In this investigation Brugger’s definition [21] of
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Table 8. The SOECs and TOECs in 1010 N/m2 at room temperature. (Experimental values are given in bold numerals.)

Crys. C11 C12 C44 C111 C112 C123 C144 C166 C456 Ref.
KF 7.615

6.185
7.71

1.555
1.440
1.59

1.885
1.250
1.29

-119.28 -6.327 1.266 3.207 3.207 -7.630
13
34

KCl 3.869
3.838a

4.940c

1.161
0.683a

0.664

0.922
0.633a

0.662

-81.19
-72.6b

-70.1

-2.669
-2.4b

-2.24

0.035
1.1b

1.33

1.622
2.3b

1.27

-3.701
2.6b

-2.45

1.586
1.6b

1.18
13a,54b

25
56c,34

KBr 3.304
3.263
4.250d

0.550
0.564
0.510d

0.765
0.504
0.583

-70.37 -2.124 -0.098 1.354 -3.065 1.324
13
35d,34

KI 2.601
2.577
3.499

0.763
0.456
0.299

0.579
0.370
0.389

-56.88 -1.492 -0.238 1.034 -2.312 1.010
13
34

Table 9. FOECs in 1010 N/m2 at room temperature.

Crys. C1111 C1112 C1122 C1123 C1144 C1155 C1255 C1266 C1456 C4444 C4455 Ref

KF 184

1716

1865

2.79

26

31.117

3.22

31.4

41.19

−1.09

−7.49

−6.29

−0.929

−7.45

−5.53

−0.564 −0.738 0.230

31.0

30.99

−0.623

−4.64

−0.214

31.0

32.18

−1.30

47

48

KCl 124

1141

1220

0.978

17

13.85

0.789

20.1

−0.08

−0.530

−2.95

−1.18

−0.460

−3.56

−0.97

−0.486 −0.372 −0.404

26.8

14.22

−0.338

2.59

−0.568

27.7

17.31

−0.607

47

48

KBr 108

991

1085

0.490

20

13.13

0.528

22.7

−5.90

−0.453

−2.22

−0.14

−0.385

−2.88

−0.11

−0.871 −.309 −0.551

30.0

12.89

−0.276

−1.99

−0.695

30.9

16.68

−0.522

47

48

KI 88.3

792

957

0.478

25

13.2

0.425

27.5

−1.44

−0.377

−1.48

−0.10b

−0.305

−2.11

−0.25

−0.869 −0.238 −0.603

34.6

12.19

−0.202

−1.31

−0.738

35.5

15.25

−0.441

47

48

second order elastic constants have been used. In the central force model for the elastic constants; the Cauchy’s

relations are as C0
12 = C0

44 . Hence only two independent second order elastic constants at absolute zero have

been used here. The Cauchy’s relation C0
12 = C0

44 , which is a consequence of any central force law, is of course
satisfied in our study. The abnormal behaviour of the temperature dependence of the elastic constant C12 is
related to the existence of many body potential and non-central potentials in solids, which are responsible for

the breakdown of the Cauchy relation C12 = C44 [27]. The Cauchy relation C0
12 = C0

44 is valid only when all
interatomic forces are central under static lattice conditions. The following Cauchy relations are satisfied by

these solids: C0
166 = C0

112 and C0
144 = C0

456 = C0
123 . Since these studies were based on two-body potentials and

could explain Cauchy relation, which are significant in all the monovalent crystals. The semi-empirical studies
[28, 29] on lattice dynamics and statics have shown that non additive three-body interactions are important
in these types of materials as there occurs appreciable decrease in their nearest neighbor separations at high
pressures. The need for inclusion of three-body interaction forces was also emphasized by Sims et al. [30]
for better matching of results. However, the recent experimental data on elastic constants measured at low
temperatures, show that the Cauchy relations are strongly violated by many ionic crystals and these violations
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cannot be ignored. It is possible that the discrepancy in respect of the elastic behaviour of solids inherent in the
current theories is responsible for physically unrealistic values of the parameters obtained in the models when
they are fitted with the neutron data. Obviously, the search for a model that gives the correct description of
the dielectric behaviour as well as the elastic behaviour of these solids is quite pertinent. A possible explanation
of this behaviour can be sought from the fact that the many-body and/or, thermal effects might be more
pronounced in SOECs than TOECs.

Table 10. The FOPDs and SOPDs (in 10−11 N/ m2) of the SOECs and partial contractions (in 1012 N/m2) .

(Experimental values are given in bold numerals.)

Crystal dC11

dP
dC12

dP
dC44

dP
ds
dP

dk
dP

d2C11

dP
d2C12

dP
d2C44

dP
Y11 Y12 Y44 Ref

KF 10.59 1.63 −0.05

-0.43a

4.34 4.81

5.26a

−5.78

−5.26

−5.78

−1.07

−0.47

−1.07

−0.84

−0.76

−0.838

1868 77.4 76

5a,47

37

KCl 11.81

12.93a

1.52

1.58a

−0.21

-0.39a

5.03

5.61a

5.10

5.34a

−14.6

−8.87

−14.6

−1.50

−0.59

−1.50

−1.18

−1.53

−1.18

−12.84 −24.13 −5.15

55a,47

37

KBr 12.01 1.51 −0.23

-0.33a

5.14 5.16

5.38a

−12.5

−10.0

−12.5

−1.99

−0.61

−1.99

−1.64

−2.10

−1.46

−3.063 −12.845 −2.699

55a,47

37

KI 12.31 1.49 −0.26

-0.24a

5.31 5.23

5.47a

−15.8

−16.9

-12.7

−15.8

−2.61

−1.40

-1.6

−2.61

−2.00

−4.42

-1.08

2.0 0

−.03 −7.92 −1.66

55a,47

26

37

Table 11. The FOPDs of the TOECs at room temperature.

Crystal dC111
dP

dC112
dP

dC123
dP

dC144
dP

dC166
dP

dC456
dP

Ref.

KF 10.1
−132

211
−4.21

218
2.25

−1.19
0.24

72.3
1.59

2.17
2.24 47

KCl 0.42
−155

130
−5.23

137
1.76

−1.16
0.08

46.7
0.18

2.05
2.25 47

KBr −52.1
−153

81.6
−6.86

87.7
1.60

−1.16
0.01

29.8
−0.75

2.03
2.20 47

KI −73.9
−174

63.9
−11.7

69.8
1.50

−1.16
0.04

24.2
−2.97

2.01
2.31 47

Table 12. Numerical Coefficients for different compounds.

Coefficients A1 A2 A3 A4 A5

KI 4.3749 0.3395 −1.1212× 10−3 1.5876×10−6 −7.4395× 10−10

KCl −1.7935 0.3031 −8.0212× 10−4 9.2505×10−7 −3.6340× 10−10

KBr −0.7222 0.3828 −1.2936× 10−3 1.8220×10−6 −8.5402× 10−10

Cauchy (1822) has derived the general mathematical theory of elasticity. That hypothesis suggests
the strains in terms of differential displacements of neighboring points in the material and the stresses in

331



RAJU

terms of attractive forces on infinitesimal areas in the similar position. The theory does not utilize these
representations completely, but following Cauchy, implements them in modified forms on the foundation of
arguments proposed by him and considered as reliable ever since. However, a crucial check of those arguments
makes them indefensible [31]. Cauchy’s assumptions are limited to the homogeneous strains only; and the more
general case of heterogeneous strains, including especially all cases of wave-propagation and static deformations
in the nature of torsion and flexure, lie outside its range. On the other hand, the mathematics of elasticity has
been applied to these cases and the constants appearing in the formulae have been evaluated experimentally.
For instance, the results of experimental work on cubic crystals have been expressed in terms of three constants
generally selected as C11 , C12 and C44 , respectively. Hence, by an examination of the experimental data for
those cubic crystals which have been investigated with adequate precision by different methods, it should be
possible to decide whether those data are expressible in terms of three constants only, or whether four constants
are actually needed [31].

The SOECs and TOECs in units of ×1010 N/m2 at room temperature for halides of potassium are shown
in Table 8. The experimental values reported by other workers are also given in this Table. The experimental
values of potassium halides [13, 25, 34, 35] are of the same order and are in well agreement with present results,
which shows the validity of the present theory. The Temperature variation of SOECs for potassium halides are
shown in Figures 1(a–c) along with available experimental data [34, 35]. The agreement is satisfactory in view
of the large experimental uncertainties. The elastic constants of solids in general decrease with temperature
and such a decrease has been explained by many available theories. But in the NaCl- like structure the
elastic constant C12 of some alkali halides (for example KCl, KBr etc.) is increasing with temperature. This
phenomenon is known as the anomalous temperature dependence of C12 in these solids. In the present work,
the temperature dependence of C12 is found to explain the observed anomalous temperature dependence of C12

in alkali halides with NaCl-Structure. Results are presented for potassium halides. We see that an anomalous
temperature dependence of C12 does not occur in sodium halides, but does in potassium halides. These results
are firmly supported by the available experimental data. The variation of C11 with temperature is found to be
large as compared with C12 and C44 . The constant C11 represents elasticity in length. A longitudinal strain
produces a change in volume without change in shape. The volume change is closely related to the temperature
and thus produces a large change in C11 . On the other hand, the constant C12 and C44 are related to the
elasticity in shape which is a shear constant. A transverse strain or shearing causes a change in shape, without a
change in volume. Therefore, C12 and C44 are less sensitive to the temperature. Thus, study of the temperature
dependence of C11 may provide a more critical test of the theory.

The higher order elastic constants are strongly related to other anharmonic properties; such as thermal
expansion, thermo elastic constants and thermal conductivity. The knowledge of TOECs may provide further
critical data for testing the machines for non-destructive-testing. Furthermore, we expected to obtain additional
data for the discussion of the influence of asymmetric ions on non-linear elastic properties, in particular for
crystals of rock salt type. Third order elastic constants play an important role in solid-state physics. They
allow an evaluation of first order anharmonic terms of the inter-atomic potential or of generalized Grüneisen
parameters, which enter the theories of all anharmonic phenomena, such as the interaction of acoustic and
thermal phonons and the equation of state. The present study of the temperature variation of TOECs could
prove useful in studies of various anharmonic properties of ionic solids in general. The TOECs play an important
role when it comes to explain anharmonic phenomena in solids (interactions of ultrasonic vibration with thermal

phonons, harmonic generators, equation of state etc.). As a result of the anharmonicity of the crystal lattice
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vibrations, the elastic constants vary with temperature. The present results of TOECs in 1010 N/m2 at room
temperature for halides of potassium are shown in Table 8. The experimental values obtained by other workers
are also given in this Table. The experimental values of potassium halides [25, 34] are of the same order and
are in well agreement with present results, which shows the validity of the present theory. The Temperature
variation of TOECs potassium halides are shown in Figures 2 and 3. Expressions obtained in the present work
are more general than those derived previously [36, 37]. This is in view of the fact that we have taken the

thermal expansion coefficient [15, 31–33] into account. Among the calculated third order elastic constants of
these materials, C111 ’s are the largest in their absolute values and an order of magnitude larger than the SOEC.
Magnitude of other Cijk ’s are markedly smaller than those of C111 .
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Figure 1. Temperature variation of SOECs for potassium halides. (a) Temperature variation of elastic constant

C11(×1010 Newton/m2) . Experimental data is from [34]. (b) Temperature variation of C12(×109 Newton/m2) .

Experimental data is from [35]. (c) Temperature variation of C44(×109 Newton/m2) . Experimental data is from [34].
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Figure 2. Temperature variation of C111 (in ×1011

Newton/m2) .

Figure 3. Temperature variation of C144 .

Third and fourth order elastic constants are required to study many anharmonic properties of crystals
and therefore their accurate evaluation is essential. Recent attempts have been made to calculate anharmonic
properties of ionic crystals [38–44]. Only a few of them [45, 46] have taken account the temperature dependence
of these properties. The thermal contribution to elastic constants is very significant. The experimental data
reveal that in going from 100 K to higher temperatures, the values of second order elastic constants (SOECs) are
changed considerably even for highly ionic solids like alkali halides. We have already discussed the temperature
variation of second and third order elastic constants of potassium halides. Since the contribution from third
and fourth order coupling parameters to many anharmonic properties are of the same order of magnitude, the
knowledge of FOECs is equally important as that of TOECs. The FOECs for halides of potassium are given in
Table 9. Some theoretical results [47, 48] are also presented. Due to non-availability of experimental data, the

comparison is not made. The Partial Contractions in 1012 N/m2 for potassium halides are given in Table 10.
Calculated results of fourth order elastic constants at different temperatures are reported in Figures 4–10. The
Partial Contractions are shown in Figure 11.
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Figure 4. Temperature variation of C1111(×1012

Newton/m2) .

Figure 5. Temperature variation of FOEC for KCl

(×1011 Newton/m2) .
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Figure 6. (a) Variation of C1144 and C1255 with temperature for KBr (×1012 N/m2) . (b) Variation with temperature

of C1155 for KBr (×1012 N/m2) .
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Figure 8. Temperature variation of FOEC for KI (×1011
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Figure 9. (a) Temperature variation of FOECs for KI (×1010 N/m2) . (b) Temperature variation of C1155 for KI

(×1010 N/m2) .
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Figure 10. (a) Temperature variation of the selected FOECs for KF (×1011 N/m2) . (b) Temperature variation of the

selected FOECs for KF (×1011 N/m2) .
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Figure 11. Temperature variation of Partial Contractions (in ×1012) for KI.

Recent extension of ultrasonic techniques to high pressure and high frequencies renewed interest in the
higher order coefficients of non- linear elasticity. Much theoretical work has been done on the temperature
dependence of the elastic constants of ionic crystals [49–53]. An investigation into the higher order elastic
constants and their pressure derivatives provides useful information on the inter-atomic forces, inter-ionic
potentials and on anharmonic properties of crystalline solids. This is why recently [38–41, 45, 46, 49–54]
there have been several attempts to determine the elastic constants of higher order, particularly for alkali halide
crystals, using theoretical [7, 8] as well as experimental techniques. The FOPDs and SOPDs of the SOECs of

potassium halides are presented in Table 10 along with experimental [26, 55, 56] and theoretical [47, 48] data.
On comparison, one may state that the present results are in well agreement at a great extent. Calculated
results of first and second order pressure derivatives of second order elastic constants at different temperatures
are reported in Figures 12, 13 and 14. An important aspect of the present investigation is the calculation
of second order pressure derivatives of SOECs at different temperatures. Experimental values of SOPD are
available corresponding to 300 K. The good agreement between theoretical and experimental values supports
the validity of the present work.

The FOPDs of the TOECs of potassium halides are presented in Table 11 along with theoretical [47]
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data. On comparison, one may state that the present results are in well agreement at a great extent. Calculated
results at different temperatures are reported in Figure 15.
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Figure 12. (a) Temperature variation of the first order pressure derivative of C12 . (b) Temperature variation of the

first order pressure derivative of C44(×10−2) .
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5. Conclusion

The extensive investigations of second-, third- and fourth- order elastic constants and their pressure
derivatives carried out in present study appear to be important in revealing the anharmonic elastic properties
of solids. It may thus be concluded that the “deformation-mechanism” used in present model provides much
better interpretation of the crystal properties in general. The cases discussed in present study are overall in
good agreement with theoretical and experimental results, which shows the validity of present theory. These
data are also useful for the interpretation of the anomalous elastic behavior of cyanides, halides and similar
systems. The new data may provide a further chance to improve the theoretical models developed recently for
the interpretation of the behavior of elastic constants in higher temperature region. But as the non-availability
of experimental data, a detailed discussion of these properties may be left for a later investigation when the
main effects are better understood. We have thus presented a simple method to study the elastic properties of
solids under varying conditions of temperatures. The results obtained are encouraging. Due to the simplicity
of the method, it can be applied to the more complicated solids, like minerals of geophysical importance and
applications. The results on different types of solids at deferent temperatures and composition are in progress.
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