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Abstract

Based on the Lucas Riccati method and a linear variable separation method, new variable separation

solutions of the (2+1)-dimensional generalized Nizhnik-Novikov-Veselov system are derived. Then, we give

a positive answer for the following question: Are there any localized excitations derived by the use of

another functions? For this purpose, some attention will be paid to dromion, peakon, multi dromion-solitoff

excitations, regular fractal dromions, stochastic fractal dromion structure and combined structures including

bell-like compactons, peakon-like compactons and compacton-like semi-foldons based on the golden main.

With the help of the modified Weierstrass function, we discuss the stochastic fractal dromion structure both

analytically and graphically. Finally, we conclude the paper and give some features and comments.
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1. Introduction

Nonlinear wave phenomena play an important role in the physical world and have been challenging topic
of research for both mathematicians and physicists. Many phenomena in physics and other fields are described
by nonlinear partial differential equations (NLPDEs). When we want to understand the physical mechanism
of phenomena in nature, described by NLPDEs, exact solutions for NLPDEs have to be explored. There
exists an extensive literature dealing with NLPDEs, in which exact solitary wave, kink wave and periodic wave
solutions are discussed. Many powerful methods have been proposed by mathematicians and physicists to obtain
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special solutions of NLPDEs, including the inverse scattering method, Bäcklund and Darboux transformations
[1–4], Hirota bi-linear method [5], homogeneous balance method [6], Jacobi elliptic function method [7, 8],

tanh-function method [9, 10], extended tanh-function method [11–14], modified extended tanh-function method

[15–17], F-expansion method, and so on [18–29].

There is well-known fact that two mathematical constants of Nature, the values π and e , play a great
role in mathematics and physics. Their importance lie in that they “generate” the main classes of so-called
“elementary functions”: sine, cosine (the number π), exponential, logarithmic and hyperbolic functions (the

number e). However, there is the one more mathematical constant playing a great role in modeling of processes

in living nature termed the Golden Section, Golden Proportion, Golden Ratio, Golden Mean [30–36]. However,
we should certify that a role of this mathematical constant is sometimes undeservedly humiliated in modern
mathematics and mathematical education. There is the well-known fact that the basic symbols of esoteric
(pentagram, pentagonal star, platonic solids, etc.) are connected to the Golden Section closely. Moreover,
the “materialistic” science together with it’s “materialistic” education had decided to “throw out” the Golden
Section. However, in modern science, an attitude towards the Golden Section and connected to its Fibonacci
and Lucas numbers is changing very quickly.

The outstanding discoveries of modern science based on the Golden Section have a revolutionary impor-
tance for development of modern science. These are enough convincing confirmation of the fact that human
science approaches that of uncovering one of the most complicated scientific notions, namely, the notion of
Harmony. Harmony is opposed to Chaos, hence meaning the organization of the Universe. In Euclid’s The
Elements we find a geometric problem called “the problem of division of a line segment in the extreme and
middle ratio”. This problem is often called the golden section problem [32–36]. Solution of the golden section

problem reduces to the algebraic equation x2 = x + 1, to which there are two roots. The positive root is

α = 1+
√

5
2

, known as the golden proportion, golden mean, or golden ratio.

El Naschie’s works [32–36] develop the Golden Mean applications into modern physics. In [36], devoted
to the role of the Golden Mean in quantum physics El Naschie concludes: ”In our opinion it is very worthwhile
enterprise to follow the idea of Cantorian space-time with all its mathematical and physical ramifications. The
final version may well be a synthesis between the results of quantum topology, quantum geometry and may be
also Rossler’s endorphysics which like Nottale’s latest work makes extensive use of the ideas of Nelson’s stochastic
mechanism”. Thus, in the Shechtman’s, Butusov’s, Mauldin and Williams’, El Naschie’s, Vladimirov’s works,
the Golden Section occupied a firm place in modern physics and it is impossible to imagine the future progress
in physical researches without the Golden Section.

In our present paper, we review symmetrical Lucas functions [25–27] and we find new solutions of the
Riccati equation by using these functions. Also, we devise an algorithm called Lucas Riccati method to obtain
new exact solutions of NLPDEs.

For a given NLPDE with independent variables x = (x0 = t, x1, x2, x3, ..., xs) and dependent variable
u ,

P (u, ut, uxi, uxixj , ....) = 0, (1)

where P is in general a polynomial function of its argument and the subscripts denote the partial derivatives,
in order to derive some new solutions with certain arbitrary functions, we assume that its solutions in the form

u(x) =
n∑

i=0

ai(x)F i(ϕ(x)), (2)
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with

F ′ = A + BF 2, F ′ =
d

dφ
F, (3)

where x = (x0 = t, x1, x2, x3, ...., xn) and A , Bare constants and the prime denotes differentiation with

respect to ϕ ≡ ϕ(x). To determine u explicitly, one may take the following steps: First, similar to the usual

mapping approach, determine n by balancing the highest non-linear term(s) and the highest-order partial

term(s) in the given NLPDE. Second, substituting equation (2) and equation (3) into the given NLPDE and
collecting coefficients of polynomials of F , then eliminating each coefficient to derive a set of partial differential
equations of ai (i = 0, 1, 2, . . . , n) and ϕ . Third, solving the system of partial differential equations to obtain

ai and ϕ . Substituting these results into equation (1), then a general formula of solutions of equation (1) can

be obtained. Choose properly A and B in ODE equation (3) such that the corresponding solution F (ϕ) is
one of the symmetrical Lucas function given bellow. Some definitions and properties of the symmetrical Lucas
function are given in appendix A.

Case 1: If A = lnα and B = − lnα , then equation (3) possesses solutions

tLs(φ), cotLs(φ).

Case 2: If A = ln α
2 and B = − ln α

2 , then equation (3) possesses the solution

tLs(ϕ)
1 ± secLs(ϕ)

.

Case 3: If A = ln α and B = − 4 lnα , then equation (3) possesses the solution

tLs(ϕ)
1 ± tLs2(ϕ)

.

Case 4: If A = 0 then equation (3) possesses the solution − 1
B F (ϕ) .

In section 2, we apply the Lucas Riccati method to obtain new localized excitations. Also in section 3,
we pay attention to dromion, peakon, multi dromion-solitoff excitations, regular fractal dromions, stochastic
fractal dromion structure and combined structures including bell-like compactons, peakon-like compactons and
compacton-like semi-foldons based on the golden mean and the symmetrical hyperbolic and triangular Lucas
functions. Finally, we give conclusions and comments.

2. New variable separation solutions of the (2+1)-dimensional gen-

eralized Nizhnik-Novikov-Vrselov system

We consider here the (2+1)-dimensional generalized Nizhnik-Novikov-Veselov (GNNV) system

ut + ρ uxxx + β uyyy + γ ux + δ uy − 3α(u v)x − 3β(u w)y = 0,

vy = ux, wx = uy,
(4)

where ρ, β, γ, α and δ are arbitrary constants. For γ = δ = 0, the GNNV system degenerates to the usual
(2+1)-dimensional NNV system, which is an isotropic Lax extension of the classical (1+1)-dimensional shallow
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water-wave KdV model. For ρ = 1, β = γ = δ = 0 in system (4), we get the symmetric NNV equation, which
may be considered as a model for an incompressible fluid. Some types of the soliton solutions of the GNNV
equation have been studied by many authors. For instance, Boiti et al. [37] solved the GNNV equation via the
inverse scattering transformation. Zhang obtained many exact solution of this system based on an extended
homogeneous balance approach [38]. In [39], discussed new types of interactions between the multi-valued and

the single-valued solitons of system (4). It is worth mentioning that this system has been widely applied in many
branches of physics, such as plasma physics, fluid dynamics, nonlinear optics, etc. So, a good understanding of
more solutions of the (2+1)-dimensional GNNV system (4) is very helpful.

Now we apply the Lucas Riccati method to system (4). Balancing the highest order derivative term with

the nonlinear term in system (4), we have the following ansätz:

u(x, y, t) = a0(x, y, t) + a1(x, y, t)F (ϕ(x, y, t)) + a2(x, y, t)F 2(ϕ(x, y, t)),
v(x, y, t) = b0(x, y, t) + b1(x, y, t)F (ϕ(x, y, t)) + b2(x, y, t)F 2(ϕ(x, y, t)),
w(x, y, t) = c0(x, y, t) + c1(x, y, t)F (ϕ(x, y, t)) + c2(x, y, t)F 2(ϕ(x, y, t)),

(5)

where a0(x, y, t) ≡ a0, a1(x, y, t) ≡ a1 , a2(x, y, t) ≡ a2, b0(x, y, t) ≡ b0, b1(x, y, t) ≡ b1, b2(x, y, t) ≡
b2, c0(x, y, t) ≡ c0, c1(x, y, t) ≡ c1 , c2(x, y, t) ≡ c2 and ϕ(x, y, t) ≡ ϕ are functions to be determined.

Substituting equation (5) with equation (3) into equation (4), and equating each of the coefficients of

F (ϕ) to zero, we obtain a system of PDEs. Solving this system with the help of Maple, and selecting the

variable separation ansätz ϕ(x, y, t) = f(x, t) + g(y, t), we obtain the solution:

a0 = AB fx gy, a1 = 0, a2 = B2fx gy,

b0 = ρfxxx+2ρABf3
x +ft+γfx

3ρfx
, b1 = Bfxx, b2 = B2f2

x ,

c0 = βgyyy+2βABg3
y+gt+δgy

3βgy
, c1 = Bgyy, c2 = B2g2

y,

(6)

where f and g are two arbitrary functions of {x, t} and {y, t} , respectively.

Now, based on the solutions of equation (3), one can obtain new types of localized excitations of the

(2+1)-dimensional GNNV system. We obtain the general formulae of the solutions of the (2+1)-dimensional
GNNV system

u = AB fx gy + B2fx gy F 2(f + g), (7)

v =
ρfxxx + 2ρABf3

x + ft + γfx

3ρfx
+ BfxxF (f + g) + B2f2

xF 2(f + g), (8)

w =
βgyyy + 2βABg3

y + gt + δgy

3βgy
+ BgyyF (f + g) + B2g2

yF 2(f + g), (9)

By selecting the special values of the A , B and the corresponding function F, we have the following solutions
of (2+1)-dimensional GNNV system:

u1 = fx gy[lnα]2(−1 + tLs2(f + g)), (10)

v1 =
ρfxxx − 2ρf3

x [lnα]2 + ft + γfx

3ρfx
− fxx lnα tLs(f + g) + [lnα]2f2

x tLs2(f + g), (11)
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w1 =
βgyyy − 2β[lnα]2g3

y + gt + δgy

3βgy
− gyy lnα tLs(f + g) + [lnα]2g2

ytLs2(f + g), (12)

u2 = fx gy[lnα]2(−1 + cotLs2(f + g)), (13)

v2 =
ρfxxx − 2ρf3

x [lnα]2 + ft + γfx

3ρfx
− fxx lnα cotLs(f + g) + [lnα]2f2

xcotLs2(f + g), (14)

w2 =
βgyyy − 2βg3

y[lnα]2 + gt + δgy

3βgy
− gyy lnα cotLs(f + g) + [lnα]2g2

ycotLs2(f + g), (15)

u3 =
1
4
fx gy[lnα]2

(
−1 +

[
tLs(f + g)

1 ± secLs(f + g)

]2
)

, (16)

v3 =
ρfxxx − 1

2
ρf3

x [lnα]2 + ft + γfx

3ρfx
− 1

2
fxx ln α

[
tLs(f + g)

1 ± secLs(f + g)

]
+

1
4
f2

x [ln α]2
[

tLs(f + g)
1 ± secLs(f + g)

]2

,

(17)

w3 =
βgyyy − 1

2βg3
y [lnα]2 + gt + δgy

3βgy
− 1

2
gyy ln α

[
tLs(f + g)

1 ± secLs(f + g)

]
+

1
4
g2

y[lnα]2
[

tLs(ξ)
1 ± secLs(ξ)

]2

, (18)

u4 = 4 fx gy[lnα]2
(
−1 + 4

[
tLs(f + g)

1 ± tLs2(f + g)

]2
)

, (19)

v4 =
ρfxxx − 8ρf3

x [lnα]2 + ft + γfx

3ρfx
− 4fxx ln α

[
tLs(f + g)

1 ± tLs2(f + g)

]
+ 16f2

x [lnα]2
[

tLs(f + g)
1 ± tLs2(f + g)

]2

,

(20)

w4 =
βgyyy − 8βg3

y [lnα]2 + gt + δgy

3βgy
− 4gyy ln α

[
tLs(f + g)

1 ± tLs2(f + g)

]
+ 16g2

y[lnα]2
[

tLs(f + g)
1 ± tLs2(f + g)

]2

,

(21)

u5 =
fx gy

(f + g)2
, (22)

v5 =
ρ fxxx + ft + γfx

3ρfx
− fxx

(f + g)
+

f2
x

(f + g)2
, (23)

w5 =
βgyyy + gt + δgy

3βgy
− gyy

(f + g)
+

g2
y

(f + g)2
, (24)

where f ≡ f(x, t) and g ≡ g(y, t) are two arbitrary variable separation functions. The potential U = u5 has
the form

U =
fx gy

(f + g)2
. (25)
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3. Novel localized structures of the (2+1)-dimensional GNNV sys-

tem

All rich localized coherent structures, such as non-propagating solitons, dromions, peakons, compactons,
foldons, instantons, ghostons, ring solitons, and the interactions between these solitons [40–52], can be derived

by the quantity U expressed by equation (25) with the help of the hyperbolic and triangular functions. It is

known that, for the (2+1)-dimensional integrable models, there are many more abundant localized structures

than in (1+1)-dimensional case because some types of arbitrary functions can be included in the explicit solution

expression [40–52]. Moreover, the periodic waves also have been studied by some authors. In this paper, we try
to give an answer for the following question: Are there any localized excitations derived by the use of another
functions? Fortunately, the answer is still positive due to some arbitrariness of the functions f(x, t) and g(y, t)in

the potential U given by the equation (25). In order to answer this question, some attention will be paid
to dromion, peakon, dromion lattice, multi dromion-solitoff excitations, regular fractal dromions, stochastic
fractal dromion structure, combined structures, including bell-like compactons, peakon-like compactons and
compacton-like semi-foldons based on the golden main and the symmetrical hyperbolic and triangular Lucas
functions for the potential field U in (2+1) dimensions.

3.1. Dromion, peakon and dromion lattice excitations

According to solution U , we first discuss its dromion excitation which is one of the significant localized
excitations localized exponentially in all directions are driven by multiple straight-line ghost solitons with some
suitable dispersion relation. Also, multiple dromion solutions are driven by curved line and straight line solitons.
When the simple selections of the functions f(x, t) and g(y, t) = g(y) are given to be

f(x, t) = 1 +
M∑
i=1

ai tLs[ki(x + ci t) + x0i], g(y) = 1 +
N∑

j=1

bj tLs(Kjy + y0j), (26)

where ai , ki, ci, bj , Kj, x0i, y0j are arbitrary constants, and M and N are integers. We can obtain a two-

dromion excitation for the physical quantity U , as shown in Figure 1, and the parameter selections as

M = 2, N = k1 = k2 = − c2
2 = c1 = K1 = 1, x01 = y01 = x02 = 0,

2a1 = a2 = 2b1 = 0.2
(27)
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Figure 1. Time evolutional plots of an interaction between two travilling dromions for the potential U with functional

forms (26) and (27); when (a) t = −5, (b) t = 0, and (c) t = 5.
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It is well-known that the interactions of solitons in (1+1)-dimensional nonlinear models are usually
considered elastic. That means there is no exchange of any physical quantities like the energy and the
momentum among interacting solitons. That is, the amplitude, velocity and wave shape of a soliton do
not undergo any change after the nonlinear interaction. But in higher dimensional non-linear models the
interactions between solitary waves may be completely elastic or non-completely elastic. From Figure 1,
we show that the interaction between a dromion-dromion is non-completely elastic since their shapes and
amplitudes are not completely preserved after interaction. Similarly, based on the field U we can obtain some
important weak localized excitations such as peakons (weak continuous solution) which is discontinuous at its

crest [u(x, t) = −k + c e(−|x−ct|), k → 0] , was first found in the celebrated (1+1)-dimensional Camassa-Holm

equation [53]

ut + 2kux − uxxt + 3uux = 2uxuxx + uuxxx.

We find many (2+1)-dimensional nonlinear models also possess these soliton excitations [15–33]. We select

f(x, t) and g(y) to be piecewise smooth functions

f(x, t) = 1 +
M∑
i=1

{
fi(x + cit) x + cit ≤ 0,

−fi(−x − cit) x + cit > 0,
g(y) = 1 +

N∑
i=1

{
gi(y) y ≤ 0,

−gi(−y) y > 0,
(28)

where the functions fi(x + cit)and gi(y) are differentiable functions of the indicated arguments and possess

boundary condition fi(±∞) = C±i ,i=1,2,. . . ,M and gi(±∞) = D±i ,i=1,2,. . . ,N with C±i and D±i being
constants, even infinity. For instance, when choosing

f1 = 0.1αx+t, f2 = 0.05αx−2t g(y) = 0.1αy, M = 2N = 2, (29)

we can derive a propagating two-peakon excitation for the potential field U . The corresponding two-peakon
excitation profile is depicted in Figure 2. Also, a simple example of peaked solitary waves with periodic behavior
is depicted in Figure 3, in which the selection function is

f1 = 0.1αx+t, f2 = 0.05αx−2t g(y) = αsTLs(y), (30)

where sTLs(y) = 1
i (αi y − α−i y), (i =

√
−1 )is the symmetrical triangular Lucas sine function [33].
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Figure 2. Time evolutional plots of the two peaked solitary waves for the potential U with functional forms (28) and

(29); when (a) t = −5, (b) t = 0, and (c) t = 5.
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From figure 2, we show that the interaction between a peakon-peakon is non-completely elastic since their
shapes and amplitudes are not completely preserved after interaction. Also with the help of figure 3, one can
easily say that the multi-peakon excitation possess periodic behavior.
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Figure 3. Time evolutional plots of the two peaked solitary waves with periodic behavior for the potential U with the

functional forms (28) and (30); when (a) t = −5, (b) t = 0, and (c) t = 5.

3.2. Multi dromion-solitoff excitations

According to the potential U in the form of its multi dromion-solitoff excitations. That can be expressed
by means of Lucas functions in the form

f(x, t) =
N∑

n=−N

0.2 secLs(x + 5n + t), g(y) =
M∑

m=−M

0.2 secLs(y + 5m). (31)

If m = n =2, we can obtain a multi dromion-solitoff excitation for the physical quantity U depicted in Figure
4 with t = 0.
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Figure 4. A plot of a special type of multi dromion-solitoff structure for the physical quantityU with the choice of

relation (31) and t = 0.
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For instance, when f(x, t)and g(y) are

f(x, t) =
N∑

n=−N

[0.2 secLs(x + 5n + t) + 0.2 secLs(x + 5n− t)],

g(y) =
M∑

m=−M

0.2 secLs(y + 5m),
(32)
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Figure 5. Time-evolution plots of an interaction between two multi dromion-solitoffs for the potential U with functional

form (32); when (a) t = -25; (b) t = 0, and (c) t = 25.

We can obtain the interactions between two multi dromion-solitoffs. Figure 5 shows an evolutional profile
corresponding to the physical quantity U . From Figure 5 and through detailed analysis, we find that the shapes,
amplitudes, and velocities of the two multi dromion-solitoffs are completely conserved after their interactions.
Consequently, the interactions between two multi dromion-solitoffs are completely elastic.

Now we focus our attention on the intriguing evolution of a dromion in a background wave for the
potential field U . For instance, if we choose f(x, t) and g(y) as

f(x, t) = 3 + 0.12 tLs(0.5x− t) + 0.02 sn(0.4x, 0.3),
g(y) = 3 + 0.12 tLs(0.5y) + 0.02 sn(0.4y, 0.3),

(33)

where, sn denotes the Jacobi sine function, we can obtain an evolutional profile of single-dromion in the
background wave for the physical quantity U presented in Figure 6 at different times when (a) t = −10,

(b) t = 0, and (c) t = 10. From Figure 6 and through detailed analysis, this figure shows the corresponding
profile of the complex wave excitation presenting the propagation of a dromion moving on the determined double
periodic wave background. However, its wave shape and wave velocity do not suffer any change, which is very
close to many actual physical processes in the natural world.
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Figure 6. Time evolutional plots of the single dromion in the background wave for the potential U with selection (33),

when (a) t = -10, (b) t = 0, and (c) t = 10.

3.3. Regular fractal dromions and stochastic fractal dromion structure

Recently, it has been found that many lower-dimensional piecewise smooth functions with fractal structure
can be used to construct exact localized solutions of the higher-dimensional soliton system which also possesses
fractal structures. If we appropriately select the arbitrary functions f(x, t) and g(y), we find that some special
types of fractal dromions for the potential U can be revealed. For example, if we take

f(x, t) = 1 + α|x−t|[cTLs(ln(x−t)2)+sTLs(ln(x−t)2)]2 ,

g(y) = 1 + α|y|[cTLs(ln(y)2)+sTLs(ln(y)2)]2 ,
(34)

where cTLs(y) = αi y +α−i y , (i =
√
−1 ) is the symmetrical triangular Lucas cosine function [33], then we can

obtain a simple fractal dromion.
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Figure 7. (a) Fractal dromion structure for the potential U with the choice if functional form (34), at t = 0. (b)

Density of the fractal structure of the dromion in the region {x= [-0.002, 0.002], y= [-0.002, 0.002]}.

From Figure 7 and through detailed analysis, Figure 7(a) shows a plot of this special type of fractal

dromion structure for the potential U given by equation (25) with the selection functions (34) for t = 0. Figure
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7(b) shows the density of the fractal structure of the dromion in the region {x= [-0.002, 0.002],y= [-0.002,

0.002]}. To observe the self-similar structure of the fractal dromion clearly, one may enlarge a small region

near the centre of Figure 7(b). For instance, if we reduce the region of figure 7(b) to {x= [-0.0002, 0.0002],

y= [-0.0002, 0.0002]}, { x= [-0.00001, 0.00001], y= [-0.00001, 0.00001]}, and so on, we find a totally similar

structure to that presented in Figure 7(b).

In addition to the regular fractal dromion, the lower-dimensional stochastic fractal functions may also be
used to construct high-dimensional irregular stochastic or chaotic fractal localized excitations. By the help of
the symmetrical triangular Lucas sine function [33], we define the modified Weierstrass function ℘ as

℘ ≡ ℘(ξ) =
M∑

j=0

λ(q−2)j sTLs(λjξ), M → ∞, (35)

where λ > 1, q < 2and the independent variable ξ may be a suitable function of {x, t} or {y}, say ξ = x + v t

and ξ = y in the functions f(x, t) and g(y), respectively, for selections

f(x, t) = ℘(x + v t) + (x + v t)2 + 1000, g(y) = ℘(y) + y2 + 1000, (36)

and
f(x, t) = 0.02 ℘(x + v t) tTLs(3[x + v t] − 20) + 1,

g(y) = 0.04 tTLs(y) + 0.12 tTLs(y + 8) + 0.08 tTLs(2 y − 16)+1,
(37)

and
f(x, t) = 0.02 ℘(x + v t) tTLs(3[x + v t]− 20) + 1,

g(y) = 0.02 ℘(y) tTLs(3 y − 20) + 1.
(38)

If the modified Weierstrass function is included in the field U , then we can derive some stochastic fractal
patterns. Figure 8 shows three plots of typical stochastic fractal patterns for the potential function U given by
equation (25) under the function selections equations (35)–(38) with the parameters λ = 1.5, q = 1 at t = 0.
From Figure 8, one can find that the amplitude of the localized or non-localized patterns is randomly changed.
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Figure 8. Stochastic fractal dromion structure for the potential U : (a) with selections (35) and (36), (b) with selections

(35) and (37), (c) with selections (35) and (38) with λ = 1.5, q = 1 at t = 0
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3.4. Special localized structures

Based on the physical quantity (25), multi-valued localized structures can be discussed, when the function

g(y) is a single-valued function and f(x, t) is selected via the relations

fx =
M∑

j=1

Fj(ξ + ωjt), x = ξ +
M∑

j=1

Xj(ξ + ωjt), (39)

where ω j are all arbitrary constants and Fj, Xj are all localized excitations with properties Fj (±∞) = 0,

Xj (± ∞)=0.

From the second equation of equation (39), one knows that ξ may be a multi-valued function in some
suitable regions of x by selecting the functions Xj appropriately. Therefore, the function fx , which is obviously

an interaction solution of M localized excitations since the property ξ|x→∞ → ∞ may be a multi-valued function
of x in these area though it is a single valued functions of ξ . Actually, most of the known multi-loop solutions
are the special situations of equation (39). Now, some attention will be paid to combined structures, including
bell-like compactons, peakon-like compactons and compacton-like semi-foldons based on the golden main and
the symmetrical hyperbolic Lucas functions:

fx = 0.5 secLs2(ξ), x = ξ − A

ln α
tLs(ξ), (40)

g(y) = 8 +

⎧⎪⎨
⎪⎩

0, y ≤ −π
2 ,

sin y + 1, −π
2 < y < π

2

2 y > π
2 ,

, (41)

where A is a characteristic parameter, determining the localized structure. Figure 9 describe three localized
structures, i.e. bell-like compacton, peakon-like compacton and compacton-like semi-foldon with A =0.05, 0.95,
1.5, respectively. They localize as a compacton in the y -direction and a bell-like soliton, peakon and loop soliton
in the x -direction, respectively.
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Figure 9. (a) Bell-like compacton structure for the potential U with selections (40) and (41) when A = 0.05,(b)

Peakon-like compacton structure for the potential U with selections (40) and (41) when A = 0.95,(c) Compacton-like

semi-foldon structure for the potential U with selections (40) and (41) when A = 1.5.
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4. Summary and discussion

In conclusion, the Lucas Riccati method is applied to obtain variable separation solutions of the (2+1)-

dimensional GNNV system. With the help of quantity (25), some localized excitations, such as dromion,
peakon, multi dromion-solitoff excitations, regular fractal dromions, combined structures, including bell-like
compactons, peakon-like compactons and compacton-like semi-foldons based on the golden main and the
symmetrical hyperbolic and triangular Lucas functions. With the help of the modified Weierstrass function, we
discuss the stochastic fractal dromion structure both analytically and graphically. We think that all localized
solutions of the (2+1)-dimensional GNNV system can not be constructed in general for all localized solutions
of the system. We hope that in future experimental studies these localized excitations obtained here can be
realized in some fields. Actually, our present short paper is merely a beginning work; more application to other
nonlinear physical systems should be conducted and deserve further investigation. In our future work, on the
one hand, we devote to generalizing this method to other (2+1)-dimensional nonlinear systems such as the
ANNV system, BKK system, KdV system, Boiti-Leon-Pempinelle system etc. On the other hand, we will look
for more interesting localized excitations.

5. Appendex

Stakhov and Rozin in [30] introduced a new class of hyperbolic functions that unite the characteristics
of the classical hyperbolic functions and the recurring Fibonacci and Lucas series. The hyperbolic Fibonacci
and Lucas functions, which are an extension of Binet’s formulas for the Fibonacci and Lucas numbers in
continuous domain, transform the Fibonacci numbers theory into “continuous” theory because every identity
for the hyperbolic Fibonacci and Lucas functions has its discrete analogy in the framework of the Fibonacci
and Lucas numbers. Taking into consideration a great role played by the hyperbolic functions in geometry
and physics, (“Lobatchevski’s hyperbolic geometry”, “Four-dimensional Minkowski’s world”, etc.), it is possible
to expect that the new theory of the hyperbolic functions will bring to new results and interpretations on
mathematics, biology, physics, and cosmology. In particular, the result is vital for understanding the relation
between transfinitness i.e . fractal geometry and the hyperbolic symmetrical character of the disintegration of
the neural vacuum, as pointed out by El Naschie.

The definition and properties of the symmetrical Lucas functions The symmetrical Lucas sine function
(sLs), the symmetrical Lucas cosine function (cLs) and the symmetrical Lucas tangent function (tLs) are defined

[30, 31] as

sLs(x) = αx − α−x, cLs(x) = αx + α−x, tLs(x) =
αx − α−x

αx + α−x
. (I)

They are introduced to consider so-called symmetrical representation of the hyperbolic Lucas functions
and they may present a certain interest for modern theoretical physics taking into consideration a great role
played by the Golden Section, Golden Proportion, Golden ratio, Golden Mean in modern physical researches

[30, 31]. The symmetrical Lucas cotangent function (cotLs) is cotLs(x) = 1
tLs(x) , the symmetrical Lucas secant

function (secLs) is secLs(x) = 1
cLs(x)

, the symmetrical Lucas cosecant function (cscLs) is cscLs(x) = 1
sLs(x)

.

These functions satisfy the following relations [30–31]
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cLs2(x) − sLs2(x) = 4, 1 − tLs2(x) = 4secLs2(x)
cotLs2(x) − 1 = 4cscLs2(x)

(II)

Also, from the above definition, we give the derivative formulas of the symmetrical Lucas functions as
follows:

d sLs(x)
dx

= cLs(x) lnα,
d cLs(x)

dx
= sLs(x) lnα ,

d tLs(x)
dx

= 4secLs2(x) lnα. (III)

The above symmetrical hyperbolic Lucas functions are connected with the classical hyperbolic functions
by the following simple correlations:

sLs(x) = 2 sinh(x ln α), cLs(x) = 2 cosh(x lnα), tLs(x) = tanh(x lnα). (IV)
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