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Abstract

In this work, Active-OSL Approximation (AOSLA) suggested by our previous study was applied to

experimental optical stimulated luminescence decay from some sediment samples. The explanation of the

AOSLA was based on the radioactive decay law of successive disintegration. It allows obtaining the peak

forms of luminescence mechanism. This work shows that detrapping constants that have great importance in

dating and dosimeters studies can be rapidly and clearly found using the AOSLA. Also, it can be concluded

that the OSL is a process similar to the radioactive decay law of successive disintegration.

Key Words: Optically stimulated luminescence decay, radioactive decay, kinetic parameters of OSL,

deconvolution.

1. Introduction

The usual method of continuous-wave Optically stimulated luminescence (CW-OSL), uses constant
excitation power. The observed OSL decay curve from such stimulation has an approximately exponential
decay. Analysis of infrared stimulated luminescence (IRSL) decay from samples has been studied by many

researchers [1–5]. In many works on CW-OSL, it has been shown that there are several overlapping OSL

signals, each with different optical decay rates [6–8].

Bulur [9] introduced an alternative technique based on the linear increase of the stimulation light intensity

(LMT) from zero to some maximum value. The measured OSL signal using LMT technique is in the peak form

and the physical parameters of the traps have been obtained. Bulur [10] reported that LM-OSL of heated
natural quartz can be well deconvoluted using a linear combination of several first-order peaks. There are
several reports on the LM-OSL signals from quartz [11–15]. Kirsh and Chen [16] report a plot of t × I(t) as a

function of ln(t) peak-shape curves (PS-plot) from which parameters were obtained.

This work presents the application of Active Optically Stimulated Luminescence Approximation (AOSLA)
that has been suggested by us as a new view into the luminescence decay mechanism. AOSLA has been based
on the decay of a radioactive nucleus and the details of it were given in our previous work [1]. The AOSLA
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has been applied to experimental CW-IRSL decay curves from sediment samples named as Dağyaka and the
experimental data by Liritzis and Bakopoulos [17], Bailey et al. [6] and Kuhns et al. [12] and tested that it can
be successfully used to deconvolute the composite IRSL decay curves. The different traps contributing to the
luminescence signal appear as different peaks in the AOSLA.

2. Simple description of the AOSL model

A short introduction to AOSLA was given in this section. See our study in [1] for a more extensive
exposition.

The AOSL approximation is schematized in Figure 1, where all allowed transitions are indicated by
arrows. The process is similar to the successive decay of a radioactive element but not identical. We have
made the assumption that the absorption of energy from an ionizing radiation source by a sample causes the
trapping states composed of shallow, medium and deep traps. We have also assumed that IR light stimulates
the trapped electrons in shallow traps into the conduction band at rate λ1 , followed not only by recombination
with trapped holes but also localization by medium or deep traps. Resultantly, the delocalized charges from
deep traps go either to shallow traps or to the conduction band then back to recombination centers to produce
the OSL.
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Figure 1. The schematic diagram of the proposed paths for movement of charges in samples during optical stimulation.

Traps F, M and D are related to the fast, medium and slow components. The trapped electron concentrations are N10 ,

N20 and N30 at t = 0.

Accordingly, the Equations describing the IRSL counts and the activity (or OSL intensity) are proposed
as follows:

N = N1 + N2 = N10e
−λ1t +

λ1λ2

λ2 − λ1
N10

[
e−λ1t − e−λ2t

]
+ N20e

−λ2t (1)

I = I1 + I2 = λ1N10e
−λ1t +

λ1λ2

λ2 − λ1
N10

[
e−λ1t − e−λ2t

]
+ N20λ2e

−λ2t. (2)

Equation (1) describes the luminescence photons counted experimentally over finite time intervals. N1 is the
number of atoms of parent element which decays λ1 into its daughter element; and N2 is the number of daughter
element with λ2 , decay constant into a stable element having N3 stable atoms. Assume that at time t = 0,

266



TANIR, BÖLÜKDEMİR

N1 = N10 and N2 = N20 . While equation (1) has been used to plot the IRSL decay curves, equation (2) was
found to be applicable to find the kinetic parameters of IRSL.

It is important to note here, for the compensation of theoretical and experimental data the term λ2 should
be inserted in the nominator of the second term in equation (1). This situation is different from radioactive

decay law. Radioactive decay law of successive disintegration can be found in a book written by Krane [18].

In addition, the AOSL was applied to triple composite radioactive decay that N3 = N30 as N1 = N10 ,
N2 = N20 at time t = 0. In this case, the equations describing the IRSL counts and the intensity are:

N = N10e exp(−λ1t) +
λ1λ2

λ2 − λ1
N10

[
e−λ1t − e−λ2t

]
+ N20e

−λ2t

+
λ2λ3

λ3 − λ2
N20

[
e−λ2t − e−λ3t

]
+ N30e

−λ3t (3)

+N10λ1λ2λ3

[
e−λ1t

(λ2 − λ1)(λ3 − λ1)
+

e−λ2t

(λ2 − λ1)(λ2 − λ3)
+

e−λ3t

(λ3 − λ1)(λ3 − λ2)

]
,

I = λ1N10e
−λ1t +

λ1λ2

λ2 − λ1
N10

[
e−λ1t − e−λ2t

]
+ λ2N20e

−λ2t

+
λ2λ3

λ3 − λ2
N20

[
e−λ2t − e−λ3t

]
+ λ3N30e

−λ3t (4)

+N10λ1λ2λ3

[
e−λ1t

(λ2 − λ1)(λ3 − λ1)
+

e−λ2t

(λ2 − λ1)(λ2 − λ3)
+

e−λ3t

(λ3 − λ1)(λ3 − λ2)

]
.

Equation (3) can be used to plot the IRSL decay curves that can be fitted to the sum of three simple exponential

functions. PS-plot of decay curves have been achieved by using equation (4) for this situation.

3. Results and discussion

Here, the AOSLA was only applied to experimental OSL data obtained by us and by other experimenters.
At first, the experimental IRSL signal from the Dağyaka sample exposed to 4 Gy β -doses was fitted to equation
(1). The optical detrapping rates (or decay constants, λ1 and λ2) and trapping concentrations (N10 and N20)

were obtained and inserted in equation (2). A function I(t)× tversus ln t (PS-plot) was plotted using equation

(2) for sample (and shown in Figure 2). This gives the peak-shaped presentation of IRSL decay curve analogous

to the TL-like presentation used by Kirsh and Chen [16]. It can be possible to observe the two peaks of the PS
curve become apparent at which correspond to the two optically sensitive electron traps. The decay-constants,
λ1 and λ2 , can be exactly found from Figure 2. Surely, equation (2) could be directly used to fit for experimental
signal. The decay curve obtained from fitting to AOSL model was shown in the left-top of Figure 2. The fitted
data is,

N(t) = 5217e−0.85t + 1756e−0.1t +
5217× 0.85× 0.1

(0.1− 0.85)
× (e−0.85t − e−0.1t).

The decay constants found from PS-plot are 0.5 and 0.1 s−1 respectively. While the deviation in λ1 is large, it
is zero for λ2 . As the difference decreases between the decay-constants, the deviation in λ1 increases.
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Luminescence mechanism for some limestone rock samples has been studied by Liritzis and Bakopoulos
[17] and they have reported that their thermoluminescence (TL) signal can be expressed by a combination of
one or two exponential components with some constant term. AOSLA model was applied to some of these
samples named as LIG93-1, E93-1 and DEL5 by them. Figures 3–5 show the decay curves and PS-plots using
the data from these samples in the work by them. It can be obviously seen that the peaks for these situations
could be also displayed apparently.
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Figure 2. The application of the Active-OSL model for

Dağyaka sample. As seen, the two decay constants appear

as the noticeable peaks.

Figure 3. The data for the sample used here was taken

from the work done by Liritzis and Bakopoulos [17]. The

detail of the data was given in the text. The two peaks

can be seen apparently.
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Figure 4. The sample named as E93-1 by Liritzis and

Bakopoulos [17] was used to test the AOSL Approxima-

tion. The two peaks can be seen obviously and decay con-

stants can be easily obtained from this figure.

Figure 5. The application of AOSLA for the sample

named as DEL5 by Liritzis and Bakopoulos [17].
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The data from LIG93-1 (see Figure 3) sample is:

N(t) = 270e−0.13te+642e−0.0014t +
270× 0.13× 0.0014

(0.0014− 0.13)
× (e−0.13t − e−0.0014t).

The decay constants obtained by using AOSLA model are 0.12 and 0.0014 s−1 , respectively. The deviation is
small (7 %) for λ1 and zero for λ2 . The data from E93-1 sample is

N(t) = 611e−0.024t + 387e−0.001t +
611 × 0.024× 0.001

(0.001− 0.024)
×

[
e−0.024t − e−0.001t

]

and the obtained decay constants are 0.025 and 0.001 s−1 . The deviation in λ1 is 4 % and zero for λ2 (see

Figure 4).

The third sample labeled DEL5 by Liritzis and Bakopoulos [17] was also considered to use in AOSLA
model. Its luminescence data is

N(t) = 665e−0.13t + 356e−0.0083t +
665× 0.13× 0.0083

(0.0083− 0.13)
×

[
e−0.13t − e0.0083t

]

and the obtained decay constants using their proposed model are: 0.1 and 0.0083 s−1 . As seen, the deviation
is also negligible level (see Figure 5).

Deconvolution analysis using AOSLA model was applied to experimental CW-OSL curve from the sample
used by Kuhns et al. [12]. They reported that the CW-OSL data from Canton dune sample (eolian sediment)

can be described by the superposition of three first-order components. The work by Kuhns et al. [12] show
the decay constants for fast, medium and slow components and the CW-OSL decay curve respectively. The
luminescence data was approximately obtained from Figure 4 in the work by Kuhns et al. [12]. Inserting these

data in Equation (3) and Equation (4), the OSL decay-curve and the PS-plot for the Canton dune sample were
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Figure 6. The data used here was taken from the work done by Kuhns et al. [12]. It has been named “Canton dune”

by them. As seen, The AOSLA can give the three peaks correspond the three decay constants.
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plotted and shown in Figure 6. The used data for the Canton Dune sample is:

N(t) = 5× 104e−0.27t + 16 × 103e−0.037t +
5 × 104 × 0.27× 0.037

(0.037− 0.27)
× (e−0.27t − e−0.037t)

+2250e−0.0024t +
16 × 103 × 0.037× 0.0024

(0.0024− 0.037)
× (e−0.037t − e−0.0024t) + 5 × 104 × 0.27× 0.037× 0.0024

×
[

e−0.27t

(0.037− 0.27)(0.0024− 0.27)
+

e−0.037t

(0.037− 0.27)(0.037− 0.0024)
+

e−0.0024t

(0.0024− 0.27)(0.0024− 0.037)
.

]

For this sample, the three peaks correspond to three optically sensitive electron traps become apparent and
the decay rates can be directly obtained from Figure 6. The significant increase in resolution of the peaks
corresponding to luminescence detrapping constants can be provided using AOSLA model. The obtained decay

constants using AOSL model (Figure 6) are 0.13, 0.032 and 0.0024 s−1 . Although the deviation in λ1 is larger
compared with other decay rates the three peaks can be seen obviously and λ3 was accurately obtained. The
reason of the large deviation in λ1 is probably the fast bleaching. The first peak in PS-plot is bleached during
25 s.

Similar procedures were also applied to the experimental data reported by Bailey et al. [6]. The measured

OSL signal from a natural Chaperon Rouge quartz sample (natural dose of about 12 Gy) held at 160 ◦C during
measurements, and the half lives for the fast, medium and slow components are shown in Table 1, as reported
by Bailey et al. [6]. The signal from the Chaperon Rouge sample has been shown by them to be the sum of
three simple exponential components. The OSL intensities from fast, medium and slow components versus time
have been shown in Figure 2 in their work. AOSLA model was applied to this data (Figure 7). For this sample,

the first peak (fast component) does not become apparent. The reason of this situation may be the bleaching
time and the small difference between the fast and medium decay constants. The fast component decays very
rapidly and the time resolution is insufficient to obtain its decay constant.
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Figure 7. The application of Active-OSL Approximation for the sample named as Chaperon Rouge by Bailey et al. [6].
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The data for this sample is:

N(t) = 3 × 104e−0.43t + 900e−0.13t + 90e−0.0013t +
3 × 104 × 0.43× 0.13

(0.13− 0.43)
×

(
e−0.43t − e−0.13t

)

+900× 0.13× 0.0013
(0.0013− 0.13)

(
e−0.13t − e−0.0013t

)
+ 3 × 104 × 0.43× 0.13× 0.0013

×
(

e−0.43t

(0.13 − 0.43)× (0.0013− 0.43)
+

e−0.13t

(0.13− 0.43)× (0.13− 0.0013)
+

e−0.0013t

(0.0013− 0.43)× (0.0013− 0.13)

)
.

The obtained decay rates using AOSLA model are 0.16 and 0.0013 s−1 for λ2 and λ3 , respectively.

Thus, as the difference among λ1 , λ2 and λ3 increases, it becomes easier to separate individual lumines-
cence components become easier since the possibility arises to resolve them as individual peaks. Furthermore,
if necessary, the total contribution of components can be directly measured using the AOSLA model.

In the AOSL Approximation, detrapped charges can be retrapped in the same traps, or others. This only
changes the trap concentration, i.e. it is not required to know the order of kinetic energy for the IRSL decay in
AOSLA.

The decay constants of slow components can be exactly obtained using AOSL model. It is known that the
slow components that characterize the deep traps are more stable than others and they have great importance
in dosimeter and dating studies. Also the slow components should be assumed to be the dominate signals in
the equivalent dose measurements.

It is important that, if there is a long tail in the experimental decay curve, the luminescence counts had
to be measured for a long time with short space. It is enough that the experimental signal versus time should be
only fitted to equation (3) or (4) to obtain the kinetic parameters of luminescence decay using AOSLA model.
The residuals do not show any systematic trends for all the graphics.

Using AOSLA model it is possible to discriminate overlapping signals and to obtain the decay constants
and trap concentrations. AOSLA allows clearly observing peak forms of the IRSL curves in the PS-presentation
and the physical parameters of the decay can be quickly obtained. It provides a precise and an accurate
determination of the OSL luminescence parameters. AOSLA is a practical way to obtain the kinetic parameters
of OSL mechanisms.

It is not necessary to know the order of kinetics to use this model. The decay rates from each of trap
types remain constant through the OSL measurements.
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