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Abstract

An attempt has been made to study the Hall effect on MHD forced convection from an infinite horizontal

porous plate with dissipative heat in a rotating system with uniform free stream when the temperature at

the plate varies periodically with time. The entire system rotates with a constant angular velocity about

the normal to the plate. A uniform magnetic field is assumed to be applied along the normal to the plate

directed into the fluid region. The governing equations are solved analytically. The expressions for the

velocity and temperature field are obtained in non-dimensional form. The skin friction due to primary and

secondary velocity field, the rate of heat transfer in terms of Nusselt number with their amplitudes and

phases of fluctuating parts at the plate are demonstrated graphically and the effects of Hall current and

magnetic field on these fields are discussed.
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1. Introduction

The study of MHD flow problems has achieved remarkable interest due to its applications in MHD
generators, MHD pumps and MHD flow meters etc. Convection problems of electrically conducting fluids in
presence of transverse magnetic field has got much importance because of its wide application in Geophysics,
Astrophysics, Plasma physics, Missile technology etc. MHD in the present form is due to the pioneer contribution
of several notable authors like Alfven [1], Cowling [2], Ferraro and Pulmpton [3], Shercliff [4] and Crammer and

Pai [5].

When the strength of the applied magnetic field is sufficiently large, Ohm’s law needs to be modified to
include Hall current and this fact was initially emphasized by Cowling [2]. The Hall effect is due merely to the
sideways magnetic force on the drifting free charges. The electric field has to have a component transverse to
the direction of the current density to balance this force. In many works of Plasma physics, it is not paid much
attention to the effect caused due to Hall current. However, the Hall effect can not be completely ignored if the
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strength of the magnetic field is high and the number density of electrons is small as it is responsible for the
change of the flow pattern of an ionized gas. Model studies on the effect of Hall current on MHD convection
flow problems have been carried out by many scholars because of its possible applications in the problems of
MHD generators and Hall accelerators. Pop [6], Kinyanjui et al. [7], Archrya et al. [8], Datta et al. [9] and

Maleque and Sattar [10] are some of them.

The rotating flow of an electrically conducting fluid in presence of magnetic field has developed its
importance from Geophysical problems. The study of rotating flow problems are also important in the solar
physics dealing with sunspot development, the solar cycle and the structure of rotating magnetic stars. It is
well known that a number of astronomical bodies possesses fluid interiors and magnetic fields. Changes that
take place in the rate of rotation, suggest the possible importance of hydro magnetic spin-up. Debnath [11],

Singh [12] and Takhar et al. [13] have studied the problems of spin-up in MHD under different conditions.

The object of the present work is to investigate the effect of Hall current and magnetic field on an
electrically conducting fluid past an infinite horizontal porous plate with dissipative heat in a rotating system
due to importance of such problems in many space and temperature related phenomena.

2. Mathematical formulation

The equations governing the motion of an incompressible viscous electrically conducting fluid in a rotating
system in presence of a magnetic field are as follows.

Equation of continuity:
�∇ · �q = 0. (2.1)

Momentum equation:

ρ

[
∂�q

∂t′
+ 2�Ω × �q + �Ω ×

(
�Ω × �r

)
+ (�q · �∇)�q

]
= −�∇p + �J × �B + μ∇2�q. (2.2)

Energy equation:

ρCp

[
∂T̄

∂t′
+ (�q · �∇)T̄

]
= K∇2T̄ + Φ +

�J2

σ
. (2.3)

Kirchhoff’s first law:
�∇ · �J = 0. (2.4)

General Ohm’s law:

�J +
ωeτe

B0
( �J × �B) = σ

[
�E + �q × �B +

1
eηe

�∇pe

]
. (2.5)

Gauss’s law of magnetism:
�∇ · �B = 0. (2.6)

We now consider an unsteady flow of a viscous and incompressible fluid past a porous horizontal plate with
constant suction velocity -w0 (say). Choose the origin on the plate and the X-axis parallel to the direction of
the flow and the Y-axis along the width of the plate. The Z-axis is considered perpendicular to the plate and
directed into the fluid region and it is the axis of rotation about which the fluid rotates with angular velocity

Ω̄. A uniform magnetic field is applied in the transverse direction of the flow. Since the plate is infinite in
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length in X- and Y-direction, therefore all physical quantities except possibly the pressure are independent of
x̄and ȳ . Let (ū, v̄, w̄) be the fluid velocity at a point(x̄, ȳ, z̄). Our investigation is restricted to the following
assumptions:

i) All the fluid properties are constants and the buoyancy force has no effect on the flow.

ii) The plate is electrically non-conducting.

iii) The entire system is rotating with angular velocity
−→
Ω about the normal to the plate and

−→
|Ω| is so small

that
∣∣∣�Ω ×

(
�Ω × �r

)∣∣∣ can be neglected.

iv) The magnetic Reynolds number is so small that the induced magnetic field can be neglected.

v) pe is constant.

vi) �E = 0.

The equation of continuity gives

∂w̄

∂z̄
= 0, with w̄ = −w0 = a constant = suction velocity. (2.7)

With the foregoing assumptions and under the usual boundary layer approximations, the equations governing
the flow and heat transfer are

∂ū

∂t̄
= υ

∂2ū

∂z̄2
+

∂Ū

∂t̄
+ 2Ω̄v̄ + w0

∂ū

∂z̄
+

σB2
0

ρ

(
mv̄ − ū + Ū

1 + m2

)
(2.8)

∂v̄

∂t̄
= υ

∂2 v̄

∂z̄2
+ 2Ω̄

(
Ū − ū

)
+ w0

∂v̄

∂z̄
− σB2

0

ρ

(
m(ū − Ū) + v̄

1 + m2

)
(2.9)

∂T̄

∂t̄
= α

∂2T̄

∂z̄2
+ w0

∂T̄

∂z̄
+

υ

Cp

{(
∂ū

∂z̄

)2

+
(

∂v̄

∂z̄

)2
}

+
σB2

0

ρCp(1 + m2)

{(
Ū − ū

)2 + v̄2
}

.

(2.10)

The relevant boundary conditions are

at z̄ = 0 : ū = 0, v̄ = 0, T̄ = T̄w + ε
(
T̄w − T̄∞

)
eiω̄t̄

at z̄ → ∞ : ū = Ū = U0

(
1 + εeiω̄t̄

)
, v̄ = 0, T̄ = T̄∞

(2.11)

We introduce the following non-dimensional quantities:

u =
ū

U0
, v =

v̄

U0
, U =

Ū

U0
, t =

t̄w2
0

υ
, ω=

υω̄

w2
0

, Ω =
2Ω̄υ

w2
0

, z =
z̄w0

υ
, M =

σB2
0υ

ρw2
0

,

Pr =
υ

α
, T =

T̄ − T̄∞
T̄w − T̄∞

, E =
U2

0

Cp(T̄w − T̄∞)
.
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The non-dimensional governing equations and boundary conditions are

∂u

∂t
=

∂2u

∂z2
+ Ωv +

∂U

∂t
+

∂u

∂z
+

M

(1 + m2)
(mv − (u − U)) , (2.12)

∂v

∂t
=

∂2v

∂z2
+ Ω (U − u) +

∂v

∂z
− M

(1 + m2)
(m(u − U) + v) , (2.13)

Pr
∂T

∂t
=

∂2T

∂z2
+ Pr

∂T

∂z
+ EPr

{(
∂u

∂z

)2

+
(

∂v

∂z

)2
}

+
EMPr

1 + m2

{
(U − u)2 + v2

} (2.14)

subject to the boundary conditions

z̄ = 0 : u = 0, v = 0, T = 1 + εeiωt (2.15)

z̄ → ∞ : u = U = 1 + εeiωt, v = 0, T = 0.

3. Solution of the problem

Let us introduce the complex variable q defined by q = u + iv where i2 = −1. The non-dimensional
forms of the equation governing the flow can be rewritten as

∂q

∂t
=

∂2q

∂z2
+

∂U

∂t
+

∂q

∂z
+

(
M

1 + m2
+ iΩ

)
(U − q) − imM

1 + m2
(q − U) (3.1)

Pr
∂T

∂t
=

∂2T

∂z2
+ Pr

∂T

∂z
+ EPr

(∣∣∣∣∂q

∂z

∣∣∣∣
2
)

+
EMPr

1 + m2
(U − q) (U − q̄) , (3.2)

subject to the boundary conditions

z = 0 : q = 0, T = 1 + εeiωt, (3.3)

z → ∞ : q = 1 + εeiωt, T = 0

Assuming the small amplitude oscillation ε << 1, we represent the velocity q and temperature T as

q = q0(z) + εeiωtq1(z) + O(ε2) (3.4)

T = T0(z) + εeiωtT1(z) + O(ε2). (3.5)

Substituting the expressions from (3.4) and (3.5) in equations (3.1) and (3.2) and by equating the harmonic

terms and neglecting ε2 the following differential equations are obtained:

q′′0 + q′0 −
(

M

1 + m2
+ iΩ + i

mM

1 + m2

)
q0 = −

(
M

1 + m2
+ iΩ + i

mM

1 + m2

)
, (3.6)

q′′1 + q′1 −
(

M

1 + m2
+ iΩ + i

mM

1 + m2
+ iω

)
q1 = −

(
M

1 + m2
+ iΩ + i

mM

1 + m2
+ iω

)
, (3.7)
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T ′′
0 + PrT

′
0 = −EPr

∣∣∣∣dq0

dz

∣∣∣∣
2

− EPrM

1 + m2
(1 − q0)(1 − q̄0), (3.8)

T ′′
1 + PrT

′
1 − iωPrT1 = −EPr (q′0q̄

′
1 + q′1q̄

′
0)

−EPrM

1 + m2
((1 − q0)(1 − q̄1) + (1 − q1)(1 − q̄0)) .

(3.9)

The relevant boundary conditions are:

at z = 0 : q0 = 0, q1 = 0, T0 = 1, T1 = 1 (3.10)

at z → ∞ : q0 = 1, q1 = 1, T0 = 0, T1 = 0 (3.11)

Here, q̄0 and q̄1 indicate the conjugate of the complex numbers q0 and q1 , respectively.

The solutions of the equations (3.6), (3.7), (3.8) and (3.9) subject to boundary conditions (3.10) and

(3.11) are

q0 = 1 − e−λ1z, (3.12)

q1 = 1 − e−λ2z, (3.13)

T0 = L2e
−Prz + L1e

−(λ1+λ̄1)z, (3.14)

T1 = L5e
−λ3z + L3e

−(λ1+λ̄2)z + L4e
−(λ̄1+λ2)z, (3.15)

where

λ1 =
1 +

√
1 + 4

(
M

1+m2 + iΩ + i mM
1+m2

)
2

,

λ2 =
1 +

√
1 + 4

(
M

1+m2 + iΩ + i mM
1+m2 + iω

)
2

,

λ3 =
Pr +

√
P 2

r + 4iωPr

2
,

L1 =
−EPr

(
λ1λ̄1 + M

1+m2

)
(
λ1 + λ̄1

)2 − Pr

(
λ1 + λ̄1

) ,

L2 = 1 − L1

L3 =
−EPr

(
λ1λ̄2 + M

1+m2

)
(
λ1 + λ̄2

)2 − Pr

(
λ1 + λ̄2

)
− iωPr

,

L4 =
−EPr

(
λ̄1λ2 + M

1+m2

)
(λ̄1 + λ2)2 − Pr(λ̄1 + λ2) − iωPr

L5 = 1 − L3 − L4.
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4. Velocity and temperature field

The non-dimensional velocity field is given by

q = q0(z) + εeiωtq1(z). (4.1)

By splitting into real and imaginary parts the primary and secondary velocity components are derived as

u = u0 + ε |A|Cos(ωt + α) (4.2)

v = v0 + ε |A|Sin(ωt + α) (4.3)

where
u0 + iv0 = q0, |A| = |q1| and α = arg(q1).

The temperature in the non-dimensional form is given by

T = T0(z) + Real part of
{
εeiωtT1(z)

}
= T0(z) + ε |B| cos(ωt + β),

(4.4)

where |B| = |T1(z)| and β = arg (T1(z)) .

5. Skin-friction

The skin friction at the plate in the direction of primary and secondary velocities are respectively given
by

τx =
[
du

dz

]
z=0

= τx0 + ε |G| cos(ωt + γ), (5.1)

τy =
[
dv

dz

]
z=0

= τy0 + ε |G| sin(ωt + γ), (5.2)

where |G| = |q′1(0)| , γ = arg (q′1(0)) , τx0 = u′
0(0) and τy0 = v′0(0).

6. Coefficient of Heat-Transfer

The rate of heat transfer in terms of Nusselt number from the plate to the fluid is given by

Nu = −Real part of
(

∂T
∂z

)
z=0

= −Real part of
{
T ′

0(0) + εeiωtT ′
1(0)

}
= −T ′

0(0) − εReal part of
{
eiωtT ′

1(0)
}

= Nu0 + ε |H | cos (ωt + δ) ,

where |H | = |T ′
1(0)| and δ = arg (T ′

1(0)) .
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7. Results and discussions

In order to study the effects of Hall current and magnetic field on skin friction, heat transfer, the
amplitudes and phases of the fluctuating parts of skin friction and heat transfer, we have plotted skin friction
amplitude |G| , heat transfer amplitude |H | , skin friction phase tan γ , rate of heat transfer phase tan δ , skin
friction due to primary velocity τx and skin friction due to secondary velocity τy against Hartmann number M

for different values of Hall parameter m . We have restricted our investigation to Pr (Prandtl number) equal
to 0.7, which correspond to air at 298 K and 1 atmospheric pressure and the Eckert number E is selected to be
0.05. The value of rotation parameter Ω is taken to be 0.2. Throughout our investigation, ω and tare chosen
in such a way that ωt = π

2
and the frequency of oscillation ε is taken to be equal to 0.001. The values of

Hartmann number M and Hall parameter m are chosen arbitrarily.

Figures 1 and 2, respectively, depict the effects of the Hartmann number M and Hall parameter m on
the amplitude |G| and phase tan γof the skin friction at the plate. It is observed from these figures that for

increasing values of Hall parameter m , the amplitude of the skin friction |G| decreases whereas the phase of

the skin friction tan γ increases. Further, we can also conclude that for low strength magnetic field, |G| and
tan γ are not affected by Hall current. This phenomenon is clearly supported from physical reality. Moreover
for increasing values of the Hartmann number M , the amplitude of the skin friction |G| increases whereas
phase of the skin friction tanγ is decreased. That is the application of the transverse magnetic field increases
the amplitude |G| of the skin friction and decreases the phase tan γ of the skin friction.
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Figure 1. The skin friction amplitude |G| versus Hart-

mann number M .

Figure 2. The skin-friction phase tanγ against Hart-

mann number.

The behaviour of the skin friction τx at the plate (due to the primary velocity) and τy (due secondary

velocity) under the influence of Hartmann number M and the Hall parameter m are presented respectively in
Figures 3 and 4. It is inferred from these two figures that the effect of Hall current causes τx to decrease and
τy to increase. The same figures also indicate that for low strength magnetic field, the Hall current does not

have any influence on the viscous drag on the plate. It is also seen that due to the application of the magnetic
field, τx increases and for small values of Hall parameter, τy decreases. In other words, the application of the
transverse magnetic field causes the viscous drag at the plate to increase in the direction of the primary velocity
and decrease in the direction of the secondary velocity.
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Figure 3. The skin-friction τx due to primary velocity

versus Hartmann number.

Figure 4. The skin-friction τy due to secondary velocity

versus Hartmann number at the plate y=0.

The effects of Hartmann number M and Hall current m on the amplitude of the rate of heat transfer
|H | and its phase tan δ at the plate are demonstrated in Figures 5 and 6. It is noticed that the application of

magnetic field leads |H | to decrease and tan δ to increase. The same figures further indicate that |H | increases
but tan δ decreases under the influence of Hall current.
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Figure 5. The Heat transfer amplitude |H | versus Hart-

mann number M .

Figure 6. The Heat transfer phase tan δ against Hart-

mann number M .

Finally, Figure 7 exhibits the behaviour of the Nusselt number (Nu) versus Hartmann number M for
different values of Hall parameter m . It is noticed from this figure that the rate of heat transfer from the plate
to the fluid falls due to the magnetic field and it rises under the effect of Hall current.
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Figure 7. The Nusselt number Nu versus Hartmann number M .
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8. Conclusion

The present investigation leads to the following conclusions:

1. The Hall current causes |G| to decrease and tanγ to increase.

2. The skin friction τx due to the primary velocity decreases and the skin friction τy due to the secondary

velocity increases under Hall current.

3. The Hall current causes |H | to increase and tan δ to decrease.

4. The application of the magnetic field leads the amplitude |H | of the rate of heat transfer from the
plate to the fluid to fall andtan δ , the phase of rate of heat transfer to rise.

5. The rate of heat transfer from the plate to the fluid is increased under the effect of Hall current and
it is reduced due to the application of the magnetic field.

Nomenclature

�q is the velocity vector
�Ω is the angular velocity of the fluid
ρ is the fluid density
�r is the position vector of the fluid particle

considered
p is the pressure
�J is the current density
�B is the magnetic induction vector
μ is the co-efficient of viscosity
σ is the electrical conductivity
t′ is the time
B0 is the strength of the applied magnetic field
Cp is the specific heat at constant pressure
T̄ is the temperature
K is the thermal conductivity
φ is the frictional heat
ωe is the electron frequency

τe is the electron collision time
e is the electron charge
ηe is the number density of electron
pe is the electron pressure
�E is the electric field
ν is the kinematic viscosity
m is the Hall parameter
U is the dimensional free stream velocity
α is the thermal diffusivity
u is the non-dimensional primary velocity
v is the non-dimensional secondary velocity
ω̄ is the frequency of oscillation
M is the Hartmann number
Pr is the Prandtl number
E is the Eckert number and the other symbols have

their usual meaning.
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