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Abstract

In this article, Differential transform method is presented for solving heat-like and wave-like equations
with variable coefficients. We applied these methods to six examples. This powerful method gives an exact

solution. These examples are prepared to show the efficiency and simplicity of the method.
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1. Introduction

The heat-like and wave-like equations can be found in a wide variety of engineering and scientific
applications. In recent years, numerous works have focused on the development of more advanced and efficient
methods for heat-like and wave-like equations such as the Adomian decomposition method [1], variational
iteration method [2] and the Adomian method [3, 4].

Differential transform method (DTM) is based on Taylor series expansion [5, 6]. In 1986, the differential
transform method (DTM) was first introduced by Zhou [7] to solve linear and nonlinear initial value problems
associated with electrical circuit analysis. The differential transform method obtains an analytical solution in
the form of a polynomial. It is different from the traditional high order Taylo’s series method, which requires
symbolic competition of the necessary derivatives of the data functions. This method has been successfully
applied to solve many types of partial differential equations [8, 9, 10]. All of the previous applications of the
differential transform method deal with solutions without discontinuity. However, many partial differential
equations have different types of discontinuity. As the DTM is more effective than the other methods, we
further apply it to solvethe heat-like and wave-like equations.

The main goal of this work is to obtain exact solutions to heat-like and wave-like equations with variable

coefficients. This paper outlines the application of DTM to the heat-like and wave-like equations.Three problems
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for heat-like equation and three problem for wave-like equation are solved to make clear the application of the
transform.

Heat-like equation
We consider a heat-like equation with variable coefficients described by a three-dimensional initial bound-

ary value problem (IBVP) of the form

Uy = f(xaya Z)uxx +g(xaya Z)Uyy+h(ﬂf,y, Z)“ZZ;
0<z<a,0<y<bdb,0<z<c,t>0,

(1.1)

subject to the Neumann boundary conditions

Um(oa Y, 2, t)
uy(xa 0; Za t)

fl(yazat)a um(aayazat) f2(yazat)a
g1(z, 2, 1), uy(x,b, 2,t) = ga2(x, 2, 1) , (1.2)
uz(xayaoat) = hl(xﬂyﬂt) Y uz(xﬂyﬂ C? t) = h2(xﬂyﬂt) )

and the initial condition
u(z,y,2,0) = p(z,y, 2) . (1.3)

Wave-like equation

We consider a wave-like equation with variable coefficients obeying a three-dimensional initial boundary
value problem (IBVP) of the form

Ut = f(x,y,z)umJrg(x,y,z)unyrh(x,y,z)uzz,

1.4
0<z<a, 0<y<bd, 0<z<ec,t>0, (1.4)
subject to the Neumann boundary conditions
ufl’(oﬂyﬂzﬂt):fl(yﬂzﬂt)’ ux(a')yﬂzﬂt):f2(yﬂzﬂt)’
uy(x,O,z,t):gl(x,z,t), uy(x,b,z,t)ZQQ(x,z,t), (15)
uz(xayaoat) :hl(xﬂy)t)) uz(xﬂy’ C7t) = h2(x’y)t))
and the initial condition
u(x,y,z,O):d)(x,y, Z) ) ut(x,y,z,O)ZH(x,y, Z) . (16)

2. N-Dimensional differential transfor
Differential transform of function w(z1, xa, ..., x,) is defined as

kg kot
1 QFrthatethn (g wo, . xy)

" kgl k! ozt oukz . ok

W (ky, ko, .., ) (2.1)

x1=0,22=0,...,2,=0

In equation (2.1), w(x1,x2,...,x,) is the original function and Wk, ko, ...,k,) is the transformed function.
The Differential inverse transform of W (ky, ko, ..., k) is defined as

o0
wW(T1, To, ..y Tp) = Z

k1=0k2=0 k,

Wk, ko, ..., k) ¥t b2 aFn, (2.2)

o0 o0
n
n=0
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In actual applications, the function w(x1, s, ...,2,) is expressed by a finite series and equation (2.2) can be

written as

Mn

mi ma
w(T1, To, ..oy Tp) = Z Z Z Wk, kg, .o kp) ¥t ah2 gk, (2.3)

k1=0k2=0 k,=0

The fundamental mathematical operations performed by n-Dimensional Differential Transform are listed in
Table 1.

Table 1. The fundamental operations of n-dimensional DTM.

Original function Transformed function
W(T1, .y Tn) = QU(T1, ooy Tp) £ V(X1 ey @) | Wk, kn) = aU(k1, ..., kn) £ 8V (K1, ..., kn)
W(k‘l, ceey kn) = (Ifl + 1)(/€1 +7"1)(/€2 —+ ].)

ri4ro+...+rn
W@, T2, oy W) = O ) (k2 + 2)ev(kn 4 1) (ko 4 7)
U(kr + 71, ka+ 1o, kn+12)
W(T1, T2y vy T) = TT T2 ... 50 W(k1,....kn) = 0(k1 —e1,ka —ea, ..., kn — €n)

Theorem 1. If w(zy1,x9, ..., x,) = u(z1, T2, ..., Tn) v(T1, T2, ..., Tp), then

k1 ko kn
W(k‘l,kg,...,kn): Z Z Z U(T‘l,...,Tnfl,knfT'n)V(kl77"1,]&‘277"2,...,]1771,177"”,1,7"”).

r1=017r.=0 rn=0

Proof. By substituting the w(z1, 22, ..., z,) = u(z1, T2, ..., xy) v(x1, T2, ..., ) in equation (2.1), we get

klzkgz...:kn,lzo,

k,=0: W(0,0,...,0) = 0!011...0!axgofgf{..axgu(xl’x%""x")v(xl’x%“"x")
= U(0,0,....,0)V(0,0,...,0);

b=l WO.0,01) = oot g 0 72 0) e, 72, )

_ Ou(z1,x2,...,mp) Ov(z1,x2,...,Tn)
= - ba:,l s ”_v(xlaxQ; ceny l‘n) + U(ﬂfl, T2y eeny xn) —bx:L »Tn

x1=0,22=0,...,2,=0

= U(0,0,...,0,1)V(0,0,...,0)+ U(0,0, ...,0,0)V(0,0, ...,0,1),

_9. _ 1 92
kn=2: W(0,0,...,2) = 5o axffaxgmaxiu(xl’ oy, Tn)0(T1, Tay . .. Tp) a0 =0
_ 10 |ou(®1,x2,...,Tn)
= 12 [7095 v(xy , Ty ..., Ty)
Ov(z1,x2,...,20)
Fu(@r, @2, ..., z,) TR o B
x1=0,22=0,...,2,=0

= U(0,0,...,0,2)V(0,0,...,0)+ U(0,0,...,0,1)V(0,0,...,0,1)
+U(0,0,...,0,00V(0,0,...,0,2)

W(0,0,.... k) = SU0,0,... .k —rn) V(0,0,...,0,7,).
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In the general form we have

W(ky ko, o) = > > o > U1, Tnety ki — 1) V(b — 11 ke — 12, k1 — 1, 7).

3. Numerical example

3.1. Heat-like models
In this section, three Heat-like models from each type will be tested by using the DTM.

Example 1. We first consider the one-dimensional heat-like model

1
ut:§x2um, 0<t<l,t>0, (3.1)
Subject to the boundary conditions
uw(0,t) =0, u(l,t)= ¢, (3.2)
and the initial condition
u(z,0) = 22 . (3.3)

Taking the two dimensional differential transform of (3.1), we can obtain
kR
U(k,h+ 1) h+1 ;;arﬂ h—s8)(k—r4+2)(k—r+ 1)Uk —r+2,5), (3.4)
and by applying the differential transform to boundary conditions (3.2), we have

1

U@,h)=0, U(l,h)= Ak (3.5)
From initial condition (3.3), we can write
U(k,0) = 6(k —2) b= (3.6)
T S lo k#£2. '

For each k, h, substituting equations (3.5) and (3.6) into equation (3.4) and by recursive method, the values
U(k, h) can be evaluated as:

1

Uk,h+1)=0, k=0,1,3,4,5,...., h=0,1,2,3,.. ,U(2,h):ﬁ

(3.7)
By using the inverse transformation rule for two dimensional in equation (2.2), the following solution can be

obtained:

3o Uk, h)zkth = U(2,0) 240 + U(2,1) 22t + U(2,2) 2%t2 + U (2, 3) 2°¢3 53)
0 h=0 3.8

U(2,4) 2%t + ...+ U(2,n) z"t™.

8

u(z,t) =

pol]
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Therefore, the closed form solution can be obtained as

u(z,t) = 22+ 2%t + F2%? 4 L2 + Lottt + Ha?tt +
(3.9)
= A+t F2 4+ Ft3+ Ftt + S5+ ) =a?el.
Example 2. We consider the two-dimensional heat-like model
1
ut:§(y2um+x2uyy), O<az,y<1l,t>0 (3.10)
subject to the Neumann boundary conditions
u5(0,y,t) =0, uy(1l,y,t) =2 sinht
(0,3,1) ) o)
uy(x,0,t) =0, uy(x,1,t) =2 cosht,
and the initial condition
ul(,,0) = o (3.12)
Taking the three dimensional differential transform of (3.10), we can obtian:
k h m
Ukk,h,m+1) = m 3 S dtrs—2,m—Dk—r+1)(k—r+2)Uk—-—r+2,h—s,l)
r=0s5=01=0
(3.13)
k h m
+> > Sr—2,s,m—I0)(h—s+1)(h—s+2)U(k—r,h—s+2,0)| ,
r=0 s=01=0
From the boundary conditions (3.11), we can write
U(Lhm) =0 U2, hm) 0 formiseven, (3.14)
Y ’m = Y Y ’m = .
% for m is odd;
% evenm,
U(k,1,m)=0, U(k,2,m) = ' (3.15)
0 oddm.

From the initial condition (3.12), we can write

1 E=m=0and h=2,
U(k,h,0)=05(k,h—2,m) = (3.16)
0 otherwise.

For each k, h substituting equations (3.14), (3.15) and (3.16) into equation (3.13), and by the recursive method,
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the value of U(k,h) can be evaluated as follows:

Ulk,h,m+1)=0, fork=1,3,4,56,7...,h=0,1,23,..., andm=0,1,2,3,...,
UO,h,m+1)=0, for h=0,1,3,4,... and m=0,1,2,3,...,
U2,hhbm+1)=0, for h=1,2,3,4,... and m=0,1,2,3,...,

2 even m (3.17)
U(O,2,m)—{ 67” odd m,

0 evenm
U(2,0,m) = 2. odd m.

By using the inverse transformation rule for three dimensional in equation (2.2), the following solution can be

obtained:

o0 o0 o0

u(z,y,t) = > Y Y afyMtmU(k h,m) =2y + y* % + 22t + 2P0 4 - -
k=0 h=0 m=0 (3.18)
+22% + 2215 + 20?0+ Za%tT 4

When we rearrange the solution , we get the following closed form solution:

u(z,y,t) = 2y2(1+§+%+§+~~~)+2x2(t1+§+§+%+“')
(3.19)
= 2y?cosht + 2z2sinht .
Example 3. We consider the three-dimensional heat-like model
1
u = iyt + %(ﬁuxx + P uyy +22u.,), 0<zy,z2<1,t>0, (3.20)
subject to the boundary conditions
u(oﬂyﬂzﬂt) = 0’ u(lﬂyﬂzﬂt) :y4z4(€t - 1)’
u(z,0,2,t) =0, u(z, 1, 2,t) = 2424 (et — 1), (3.21)
u(x’yﬂoﬂt) = 0’ u(x’y’]"t) :x4y4(et - 1)’
and the initial condition
u(z,y,2,0)=0. (3.22)
Taking the four dimensional differential transform of (3.20), we can obtain:
U(k,hy,n,m+1) = #ﬂé(k74,h74,n74,m)
kK h n m
er S S Y —-2, 5, Am—=Uk—-—r+1)(k—r+2)Uk—-r+2,h—s,n—A\I)
=0 s=0 A=01=0
k h n m (323)

+X 3> > trs—2, Am—=0(h—s+1)(h—s+2)Uk—r,h—s+2,n—A\I)
r=05=0 A=01=0
k h n m

FX D> S drms, A=2,m—=Dn—-A+1)n—A+2)Uk—r,h—s,n—A+2,0)]|.
7=0 5=0 A=01=0
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By applying the differential transform to boundary conditions (3.21), we have

U(0,h,n,m)=0,

k h n m

U1, h,n,m)= (Z S5 Zé(r,s4,)\4,ml).(thlern)\H)!) —d(r,s—4, x—4,m-1),
=0 s=0 A=0 =0

U(k,0,n,m)=0,

k h n m

Uk,1,n,m) = (Z S5 25(7"4,5,)\4,ml).(thlern)\H)!) —0(r—4,s,\—4,m—1),

r=0s=0 A=01=0

U(k,h,0,m)=0,
h n m
Ulk,hyl,m)= > > > > 5(7"74,574,)\,m7l).(k7r+h781+n7)\+l)! —0(r—4,s—4,\m-1).
7=0 5=0 A=0[=0
(3.24)
From the initial condition (3.22), we can write
U(k,h,n,0)=0. (3.25)

For each k, h substituting equations (3.24) and (3.25) into equation (3.23) and by recursive method, the values

U(k, h) can be evaluated as follows:

Ulk,hyn,m+1)=0, for k=0,1,2,3,5,6,..., h=n=m=20,1,2,... (3.26)
vadam=1 " ™70 (3.27)
Y Y ’m = *
% m > 1.

By using the inverse transformation rule for four dimensional in equation (2.2), we obtain series for u(zx,y, z,t).

When we rearrange the solution, we get the following closed form solution:

u(x,y,2,t) = atytzt(t+ ’;—2, + ’;—3; + % +..)
(3.28)
= ziytztel - 1).
3.2. Wave-like models
In what follows we illustrate our analysis by examining the following three wave-like equations.
Example 4. Consider the one-dimensional wave-like model
L 5
Utt:§ﬂfuxa:, O<z<l1l,t>0, (3.29)
subject to the boundary conditions
u(0,t) =0, wu(l,t) =1-+sinht, (3.30)
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and initial conditions
u(z,0) =z,  wuz,0)=2z%. (3.31)

Taking the one dimensional differential transform, we can obtain

k h
U(k,h+2) = 225(r2,h5)(kr+2)(kr+1)U(kr+2,s)>, (3.32)

1
2(h+1)(h+2) <r0 pors
then by applying the differential transform to boundary conditions (3.30), we have

0 for hiseven,
U(,h)=0, U(l,h)=46(k)dé(h) + (3.33)
for h is odd.

Bl

Applying the differential transform to initial conditions (3.31), we have

1 k=1,
0 k#1.

1 k=2,

Uk,1) = 6(k —2) = { (3.34)

U(k‘,O)—é(kl)—{ 0 hio

For each k,h, substituting equation (3.34) into equation (3.32), and by recursive method, U(k,h) can be

UL h) 1 forh=0
"l 0 forh=1,23,...

evaluated as follows:

0 foreven h (3.35)

U2,h)=
(2.h) { for odd h,

1
h!
U(k,h) =0, fork=3,4,5,.... h=0,1,2,3,....

Using the inverse transformation rule, we obtain a series for u(z,t). Rearranging the solution, we get the

following closed form solution:

wa,t) = z+a(t+L 4L ) (3.36)
= 1z +2%(sinht). .
Example 5. We next consider the two-dimensional wave-like model
1
un = 75 Upr + Y Uyy), 0<z,y<1l,t>0, (3.37)
subject to the Neumann boundary conditions
u5(0,y,t) =0, uy(1,y,t) = 4cosh ht
(0, y,1) (L, y,1) (3.38)
uy(x,0,t) =0, uy(x,1,t) = 4sinh ht ,
and the initial conditions
U(ﬂf, Y, 0) = 354 ’ Ut(ﬂf, Y, 0) = y4 . (339)
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Taking the three dimensional differential transform of (3.37), we can obtain

k h m
Uk,h,m+2) = m X[ 3 S dr—=2,ssm—Uk—-r+1)(k—r+2)Uk—r+2,h—s,l)
r=0 5=01=0
k h m
+>3 > > drys—2,m—1)(h—s+1)(h—s+2)U(k—r,h—s+2,1)| ,
r=0 s=01=0
(3.40)
From the boundary conditions (3.38), we can write
U(l,h,m)=0
% for even m, (3.41)
U(2,h,m) = '
0 forodd m,
Uk,1,m)=0
0 forevenm (3.42)
U(k,2,m) =
% forodd m.
From the initial condition (3.39), we can write
1 h=m=0andk =14,
U(k,h,0) =3k —4,h,m)=
0 otherwise.
(3.43)

1 k=m=0andh =4,
Uk ,h,1) =06k, h—4,m) =

0 otherwise.

For each k,h, substituting equation (3.43) into equation (3.40), and by the method of recursion, the value
U(k,h) can be evaluated as:

U(k,h,m+1)=0,fork=1,2,3,..., hhm=0,1,2,3,...,
0 for even m

U(0,4,m) =
% for odd m, (3.44)
% for even m > 2

U(4,0,m) = '
0 for m =0 and oddm.

By using the inverse transformation rule, the following solution can be obtained:
u(z,y,t) = > Y Y afyMtmU(k hym) =yt + Syt + Syttt + Lyt +
k=0 h=0 m=0 ' ' ' (3.45)

tat + ot + fattt + Fattb +

When we rearrange the solution, we get the following closed form solution:

u(z,y,t) = z* cosht + y*sinh t . (3.45)
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Example 6. We consider the three-dimensional wave-like model

1
Upp = (x2 + 4?2 +z2) + E(xQUM, +y2uyy +2%u,,), 0<mzyz<1,t>0, (3.46)

subject to the boundary conditions

u(0,y,z,t) = y?(e! = 1)+ 22(e™" = 1), u(l,y,zt)= (1+¢?) (' = 1)+ 22" - 1),
u(z,0,2,t) = 2?(e! — 1) +22(e7" = 1), wu(z,1,2,t)= (1+2%) (e —1)+22(e”t — 1), (3.47)
u(z,y,0,t) = (z2 +y?) (¢! = 1), u(z,y, 1,t) = (22 4+ 4%) (e = 1)+ (e7F — 1),
and the initial conditions
u(x,y,2,0)=0, u(z,y, 2,0) = % 4y — 22, (3.48)

Taking the four dimensional differential transform of (3.46), we can obtain:

Uk,h,n,m+2) = [0(k —2,h,n,m)+ 0(k,h —2,n,m)+ 6(k, h,n —2,m)]

- (m+1)(m+2)

r £ h n m 7]
SIS > itr—2,5, Am—-—Ok—r+1)(k—r+2)Uk—r+2,h—s,n—A\]I)
r=0s=0 A=01=0
k h n m
+m —+ zo zo)\z()lz()é(?",S*2,)\,m*l)(h*S+ 1)(h*8+2)U(k*7",h*S+2,n*)\,l)
k h n m
+ 20 20)\2;0[;)5(7“,5,)\72,m71)(n7)\Jr Dn—=A+2)U(k—r,h—s,n— A+ 2,1)
(3.49)
By applying the differential transform to boundary conditions (3.47), we get
E h )
U(Oa h,n, m) = 7’;) 52::0 )\2;0 l;) (5(7”, §—2,\,m— l) " (k—r+h—s+tn—2+D! 5(k’ h—2,n, m)
n m _\k—r+h—s+n—XA+l
+ Z Z Z Z (5(7”, S, A— 2; m— l) ! ék,l)rJrh,SJrn,)\Jrl)! - 5(ka ha n— 2; m)a
r=0 s=0 A=01=0
1 k h n 1
U(l,h,n,m) = =5 —d(k,h,n,m) + r;) g:o )\2::0 l;) o(r,s—2,\,m—1)- (e )
k h n m (—1)k—rHh—stn-Atl
—0(k,h—2,n,m)+ > >0 > S 6(rys, A —2,m—1) - (s ey wu 5k, h,n—2,m),

k h n
U(ka 0; n, m) = Z Z Z Z 5(7/. - 2; S, >‘a m— l) ! (kfrJrhflernf)\Jrl)! - 5(k - 2; ha n, m)

(—1)krthostn—a+t

+ Z Z Z Z (5(7”, S, A— 2; m— l) ! (];7r+h75+n7)\+1)! - 5(ka ha n— 2; m)a

k
U(kaoanam) = Z

z Solr—2,8,Am—1)- (k7r+h781+n7)\+l)! —0(k—2,h,n,m)

1)k—r+h—stn—A+l

k h n m
+ Z Z Z Z (5(7”, S, A— 2am - l) ! Elzf)rJrhfernf)\Jrl)! - 5(ka han* 2am)a
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k h n m
U(ka ]-anam) = % - 5(kahanam) + Z Z Z Z 5(7n - 2a8a>\am* l) ! (k7r+h751+n7)\+l)!

(= 1)k rhostn—asl

k n m
+ Z Z Z Z (5(7”, S, A— 2am - l) ! (k—r+h—s+n—A+1)! - 5(ka han* 2am)a

k h n
U(ka ha Oa m) = Z Z Z Z 5(7n - 2; S, >‘a m— l) : (k7r+h751+n7)\+l)! - 5(k - 2; ha n, m)

kK h n m
+ Z Z Z Z (5(7”, s = 2; >‘a m— l) : (k7r+h751+n7)\+l)! - 5(ka h — 2; n, m)a

k h n
U(k‘,h,l,m) = Z Z Z Z 5(7"*2,8,)\,7)171) ! (kfrJrhflernf)\Jrl)! 7(5(k72ahanam)

k h n m
+5 3 S S (s —2,A,m—1) - (k7r+h781+n7)\+l)! —0(k,h—2,n,m)

From the initial condition (3.48), we can write

U(k,h,n,0)=0,
Uk ,hyn,1) =6k —2,h,n,m)+ 6(k,h — 2,n,m) — d(k, h,n — 2, m)

1 k=2,h=n=m=0
0 otherwise
1 h=2 k=n=m=0
Jr
0 otherwise
1 n=2, k=h=m=0
Jr

0 otherwise.

(3.50)

(3.51)

For each k, h, substituting equations (3.50) and (3.51) into equation (3.49), and via the recursive method, the

values U(k, h) can be evaluated as follows:

Ulk,hyn,m+1)=0, for k=1,3,4,5,6,..., h=n=m=0,1,2,...

0 m =20

U(0,0,2,m) =
S om=1
0 m =20

U(0,2,0,m) =
% m>1
0 m =20

U(2,0,0,m) =
% m>1

(3.52)

Using the inverse transformation rule for four dimensional in equation (2.2), we obtain a series for u(z,y, z,t).
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On rearranging the solution, we get the following closed form solution:
2 3 4 5 2 3 4 5 2 3 4 5
w(z,y,zt) = P(—t+5-5+5 -5 ) +Pt+5+5+5+5 )+t + 5+ 5+5+5)
= 22t -1+ @2 +a)(e —1).
(3.53)
That is,

u(x, y, z,1) —222(]-—?j +y22% +x22% =2 =)+ P +a?) (e~ 1) (3.54)

j=1 7 j=1

4. Conclusion

In this study, the differential transform method is successfully expanded for the solution of heat-like and
wave-like equations. In the first three examples various kinds of heat-like equations. The final two problems
were considered for various kinds of wave-like equations. Since the Differential Transform Method (DTM) gives
rapidly converging series solutions, the differential transform method is more effective than other methods. The
accuracy of the obtained solution can be improved by taking more terms in the solution. Exact closed form

solution is obtained for all examples presented in this paper.
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