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Abstract
The asymmetric rotor model (ARM) of collective rotation is used to search for the correlation between
the rotational energy with the asymmetric parameter o for Xe-Pt nuclei. The correspondence of the ratio
ROTE/E(2]) vs. Raso(= E(47)/E(2])) and ~o is used to distinguish between the axially symmetric
and triaxial nuclei. The correlation between deformation parameter 5 and 7o is studied to understand
the structure of the nuclei. The ~-band energy staggering in low-spin, low-energy spectra of even-even
122-124 Yo and 1247128 Ba nuclei is also discussed. We have compared our results with experimental data

and other theoretical models.
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1. Introduction

The Bohr-Mottelson expression has been widely used for the description of the low energy spectra of the
deformed nuclei that satisfy the rotational limit R4/, > 3.3 [1]. There are several other formulae that describe

the properties of ground band energy of transitional nuclei. The simplest well known expression for rotational
spectra is

E:h—QJ(JJrl), (1)

2<%
where § and J are the moment of inertia (MI) and spin of nuclei, respectively. The Bohr-Mottelson energy

expression for the deformed nuclei [1] is
E(J) = AX + BX? + CX?, (2)

where X = J(J + 1) works only for the well-deformed nuclei having energy ratio R4/, > 3.1, the rotational

limit being 10/3. The anharmonic vibrator model expression [2, 3],

E(J) = aJ +bJ?, (3)
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is equivalent to the two parameter Ejiri expression [4] of the ground band energy
E(J)=(a=b)J+bJ(J+1), (4)

which yields a linear relation of Rgs(= E(67)/E(2])) with Ry/> on a Mallmann plot [5]-[6]. However,
the experimental data deviates from the linear plot showing the need of a third term i.e. rotation vibration
interaction (RVI) term

E(J) =aJ(J +1) 4+ bJ + cJ*(J + 1). (5)

Here, the first term represents the rotational energy (ROTE), second represents the vibrational (VIBE) energy
and the third represents the interaction (INTE) energy. Gupta et al. [7] have studied the effect of rotation on
non-rigid nuclear core with the variation of N, Z from a spherical vibrator to an axially deformed rotor. Gupta
et al. [5] illustrated the systematic variation of two parts of 2f state energy with N, Z; e.g., first term =6a
is called ROTE, and the sum of VIBE + INTE= 2b + 12¢ is called the shape fluctuation energy (SFE). The
constants a, b and ¢ are calculated by least square fitting method with level up to J™ < 127, below the back
bending effect. The correlation of ROTE and VIBE with B(E2) values or [ states is such that the energy of 2f
state decreases and increases in a complementary way. Large deviations from these limiting cases occur for the
transitional nuclei that cannot be easily explained by any perturbation method, e.g., the J(J + 1) expression
of level energies of ground band.

Davydov et al. [8, 9] proposed rigid triaxial asymmetric rotor model(ARM) to explain these deviations
and obtained better results than the axially symmetric rotational model. The centrifugal stretching term in the
J(J + 1) expansion of E; would be smaller if shape asymmetry parameter 79 > 0 was assumed. Gupta and
Kavathekar [7] described the interband B(E2) ratios in the rigid triaxial model. The variation of B(E2) with
~o is helpful to check the consistency of the model.

Recently, Singh et al., [10] have studied the yrast and y-band for 2°~139Xe nuclei using ARM by
employing the Lipas parameter and commented that the reason of odd even staggering (OES) is the splitting
of v-band in odd and even spin sequence. The structure of the K™ = 27 gamma vibrational bands and the
quasi-gamma bands of even Z-even N nuclei is investigated on a global scale. The yrast band energies, OES
in the 7-band for Xe (A=116-118) and Ce (A=128,132 and 134) chain have been done in the frame work of
Asymmetric Rotor Model [11].

Recently, McCutchan et al. [12] studied the staggering in band energies and the transition between

different structural symmetries in nuclei by using the expression

{(E(J) - E(J -1} —{E(J -1) - E(J - 2)}
B(27)

S(J) = ~ (6)
In the present work, we try to search whether the J(J + 1) rule obeys the three energy sequences of yrast and
quasi v band in Xe and Ba nuclei. Zamfir and Casten [13] examined the values of the staggering indices S(4, 3, 2)
and S(6,5,4) obtained from the experimental data of even-even nuclei and examined whether the nuclei are ~-
soft or ~y-rigid. Liao [14] had commented that one cannot clearly distinguished between v-soft and «-rigid rotor
according to the value of S(4). Liao recommended that S(6), S(8) and S(10) should be studied for testing the
shapes of nuclei( y-soft or y-rigid). Here, we will search whether the J(J+1) rule is obeyed in the three energy

sequences of yrast and quasi y-band. If the rule is obeyed, the nucleus is axially symmetric rotor else it happens
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to be triaxial or y-soft. It should be kept in mind that the indices AF; = E(3]) — (F(2])+ E(23)) = 0. This
condition is not only valid for the ~-rigid rotor but also for the axial rotor. Both axially symmetric and y-rigid
asymmetric nuclei follow these conditions. Also, AFE; is very small as compared to AFE5 for both cases.

1.1. Present approach

If the K = 2 band follows the axial rotor model with vibration-rotation interaction, one has the energy

spectrum formula

E(J)=AJ(J+1)— BJ*(J +1)% (7)
If B=0, then S(J) =0 for all values of A in equation (7). If not, one can use the perturbed rotor formula,
also known as the soft rotor formula (SRF) [15]

J(J +1)

where a and b are the constant parameters. The values of a and b are fitted by using Qj and 4;r energies in
the even sequence and Sj and 5j energies in the odd sequence. For these calculations, experimental data is

taken from www.nndc.bnl.gov [16].

We also study the variation of the ratios of ROTE/ E(2]), VIBE/ E(2]) and SFE/ E(2]) energy with o
to understand the difference between axially symmetric and triaxial nuclei. We compare the RVI formula with
other three parameter formula such as anharmonic vibrator (AHV) formula and VMINS3 model [17], which is
the modified version of variational moment of inertia model(VMI) [18], to check the accuracy of this formula.

The variation of v9 with § is helpful to understand the structure of nuclei.

2. The asymmetry parameter (7))

There are several methods to calculate the asymmetry parameter ~y. One can calculate g

(a) from the ratio R, = E(25)/E(2]) [9];

(b) from the ratio R4/5 [19], indicating that the DF model is valid only for those nuclei which have the ratio
R4/2 = % to % s

(c) from the energy of 4] and 23 states [20] and from sum of the absolute B(E2;2{ — 0) and B(E2;2§ —

07) value [21]. In this method, the sum of the absolute B(E2) values are used to determine the value of

quadrupole moment @ and ~q.

Varshni and Bose [19] preferred to determine o from Ryo(= E(47)/E(27])), thereby excluding nuclei
with R4/ < 8/3, for which Van Patter [22] noted the large deviations. Gupta et al., [21] used the B(E2) values

to determine 7. As these B(E2) values are small and are not easily available with good accuracy, therefore,

7o from the level energies should be more reliable. We have derived 7y from the R, values using the equation

1 9 R, —1\?\1"*
_ Lt -2 v
Y= 1 sin Hl (RVH) )] | (9)
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for Z=52-78, N=68-78 and N =84-104. In terms of B(E2) values vy is equal to

B(E2:2§ - 0f) _ /9 —8sin®3y — 3+ 2sin’ 3
B(E2 :2fﬂof) \/97851n23’yo+372sin23'yo

From the above relation we have also calculated 8. According to the approximate empirical Grodzins relation
[23]

(10)

E(2]7)- B(E2;2 — 0f) =2.5x 107224 [in units of e?b*MeV], (11)
hence
E@2f) = 235(;21’25683)1 [in units of e2b*MeV]. (12)
On relating 8 and E(2]) we obtain
5 Fa (13)
where (g is a constant. Hence
9 — /81 — 72sin?(370)
p = Pa , (14)

4sin?(379)

3. Results and discussion
3.1. Variation of ROTE /E(2{) versus Ry

In quadrant-IV, 66 < N < 82 (Xe-Sm), region of neutron deficient nuclei ROTE/FE(2]) varies linearly
with Ry /o ratio and lies between 2.1 and 2.8 (see Figure 1). At R4/ = 2.1, the 130-132X 6 nuclei behaves like
a vibrator SU(5) having low value of ROTE/E(2]) (approximately 35% ) and at Ry/> = 2.2 the nuclei attain
the E(5) symmetry. The neutron deficient Xe, Ba, Ce, Nd and Sm nuclei having ROTE/E(2]) = 75% are
~v-soft and lie between the vibrator and deformed 7-soft structure. This corresponds to SU(5)-O(6) transition
region, in the language of the interacting boson approximation (IBA) [24]. Next in quadrant-I, N > 82, of
small neutron number i.e. N = 84 — 88, the Ry ratio of Gd lies between 1.8-2.2, having ROTE/E(2]) =
20%. Hence these nuclei are vibrational [SU(5)] in nature. For Ry = 3.3 and ROTE/E(2]) = 100% all
these nuclei are axially symmetric in nature. In quadrant II, N < 104 at N = 90, the Er nuclei behave as
7y-soft, having R,/; = 2.4 and ROTE/ E(2]) = 20%. But with increasing neutron number, R4 /2 increases
and deformation also increases hence ROTE/ FE(2]) = 100%, therefore, these nuclei are example of SU(3)
symmetry. Next, in quadrant-IIT, N>>104, Pt nuclei lie below in the curve because at low value of Ry/2(< 3.0),
it is not deformed. At R/ = 2.9, there is a critical point symmetry i.e X(5) where second order transition

takes place.
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Figure 1. Variation of ROTE/ E(2]) as a function of Ry, for N = 68-126 in all four quadrants (Q-I-IV).

3.2. Variation of ROTE/ E(2) versus v,

In Figure 2, for N < 82 (quadrant-IV), the ratio ROTE/ E(2]) for Xe-Sm nuclei shows a monotonic
linear fall with increasing 7. Here, vy values lies between 22° and 30°, indicating that these neutron deficient

nuclei lie in the [SU(5)-O(6)] region, i.e. the ~-soft region where the potential is y-independent. Even at
70 = 22° ROTE/E(2]) is approximately 75%, i.e., a large rotational energy at small Rys2 (= 2.8). In Sm
nuclei for small neutron number, i.e., N = 82-86, 7y is higher but ROTE/ E(2f) energy is small, hence these
nuclei lie in the SU(5) region. Next, at 7o = 8°, for ROTE/ E(2]) = 100%, Sm, Gd and Dy nuclei are axially
symmetric in nature. '°Er nuclei, having Ry s2= 2.3, lie between E(5) and y-soft nuclei at lower value of
ROTE/ E(2]) ~ 20%. Similarly, at N = 90, the relative ROTE/E(2]) is 50% at R4/ = 2.7, containing
small rotational energy part and behave as O(6) nuclei. But in quadrant II at N = 92-102, the value of ~q
is less but ROTE/ E(2]) rises to 100%, hence these nuclei are axially symmetric rotor having R, 2 = 3.3.
For N > 104 (quadrant III) the datum of Pt nuclei lies below the curve because these nuclei do not get
deformed below 16°, hence here value of ROTE/ E(2]) is 100%. The behavior of VIBE/ E(2]) is opposite to
ROTE/ E(2]) given by

Y; = ROTE/E(2]) = B + Alexp(C - X)], (15)
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where A, B and C' are constant parameters obtained from the curve and X is the z-axis scale factor. The

values of fitting parameters are listed in the graphs for all the four regions. In Figures 3 and 4 we see the variation
of VIBE/E(2]) with Ry/> and 7. The VIBE/E(2]) energy decreases for both Ry/» and ~o. Similarly, the

SFE/E(2]) energy shows same trend as that of the VIBE/ E(2]) energy (see Figures 5 and 6).
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Figure 2. Variation of ROTE/ E(2]) as a function of ~y for N = 68-126 in all four quadrants (Q-I-1V).

3.3. Study of odd-even staggering in ?>7'?*Xe and '?*~'2®Ba nuclei

Thiamova [26] studied the staggering of «y-band level energies and compared it with the IBM model. The
level energies for the y-band in '227124Xe and '?4~!28Ba nuclei have been plotted. In Figure 9 we see the
variation of staggering factor S(J) with spin J for 122 Xe and 24 Xe nuclei. The spacing between odd even spin
levels in the present work are in close agreement with experimental values for S(4), S(5) and S(6). For higher
values of J, separation increases between evaluated and experimental values of S(J), but in small amounts.
In Figure 10 we see the variation of S(J) with J for 12Ba and 26Ba. The calculated value of S(.J) matches
excellently with the experimental data for S(4) to S(10) factor in 124Ba while a small deviation in S(9) and
S(11) is found in !2Ba nuclei. Next we see the variation of '2®Ba nuclei in Figure 11. The calculated and
experimental values of S(J) shows excellent agreement up to S(10). This means that there is a small energy
difference between there energy levels. Next we see the comparison between the experimental and calculated

values of the ground band and the gamma band energies.
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Figure 3. Variation of VIBE/ E(2]) as a function of Ry/» for N = 68-126 in all four quadrants (Q-I-IV).
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Figure 4. Variation of VIBE/ E(2]) as a function of v for N = 68-126 in all four quadrants (Q-I-IV).
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Figure 7 we see the variation of «y and . Both these parameters show close correlation. The variation
of 7 and @ for Hf-Pt nuclei are shown by Esser et al. [25]. We also correlate it for the light nuclei and find
that the correlation is excellent. Therefore, this variation suggests that ( remains constant with ~y for soft

nuclei as compared to the well deformed nuclei. In Figure 8 we see the variation of ~y with boson number Np.

The asymmetric parameter 7o is an effective parameter, therefore the study of all the nuclei is worthwhile.
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Figure 7. Variation of 7y with boson number Ng for N = 68-126 region nuclei.
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Figure 9. Signature splitting S(J) is plotted versus spin

J for 1227124 Xe nuclei.

Figure 10. Signature splitting S(J) is plotted versus spin

J for 1247126 By nuclei.
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When we see the variation of S(J) with Ry, (see Figure 12), the even staggering factors S(4), S(6)
and S(8) attain negative value and the odd staggering factors such as S(5) and S(7) have positive values. The
ratio Ry/o lies between 2.4-2.9, which means nuclei are in the range of O(6) and X(5) symmetry. When Ry/o
is 2.4, S(4) = —0.5 and S(5) = 0.5, in the case of Ba nuclei. As R,/, approaches X(5) symmetry, the value
of S(8) becomes equal to —2.8, which is the minimum value; but on the other side, for the same Ry, S(7)

attains maximum value of staggering factor, i.e S(J) = 2.3.
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Figure 11. Signature splitting S(J) is plotted versus spin ~ Figure 12. The experimental S(J) as a function of R4/,

J for ?® Ba nuclei. for Ba nuclei.

In Figure 13 we plot the '?27124Xe nuclei, which shows good agreement up to .J = 8*. Beyond this
there is a fall in the calculated energies. In the case of gamma band, a close agreement is found up to J = 57
after which there is fall in gamma band energies. Next we compare the calculated and experimental values for

124=126 B4 nuclei. The ground band energy shows close agreement up to JJ = 8% similar to that of Xe nuclei. But
in case of gamma bands the agreement is good up to J = 11F for 26 Ba nuclei and J = 107 for 24 Ba nuclei (see

Figure 14). We took another test of triaxiality on the basis of energy relation AE; = E(3])— [E(2]) + E(23)]

for triaxial nucleus and AE; = E(3]) — [2E(2]) + E(4])] for y-soft nucleus given by Wilets and Jean[27]. A
large value of AE; and small value of AFs reflects a y-soft character. The difference AFE; is low while AFs
is large for 1227124Xe which reflects the triaxial nature. For 124=128Ba | AFE; is large and AE5 is small which

show the ~y-soft nature. The values of AFE; and AFE5 are presented in Table.

Table. The experimental and calculated difference AFE; and AFEs

Nuclei 122xe | 124xe | 124Bg | 126 | 1284
Exp.AE; 40.04 46.1 60 106 157
Exp.AFEs | 275.72 | 339.2 51 13 5

Th.AE, 48.6 46.1 99.3 106.6 | 155.9
Th.AEy | 226.4 | 339.2 o1 12.7 6.8
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Figure 14. Comparison between experimental and calculated g-band and ~y-band energy of 1247126 Ba nuclei.

3.4. Comparison with three parameter formulae

In this subsection we show a comparison of present work (RVI) with other formulae such as AHV and
VMINS3. In Figure 15 we have taken '2°7122Xe, 126Ba and !'2Sm nuclei. The present work shows good
agreement with the experimental energy up to 147 ground energy level. In Figure 16 we have taken 52Dy,
164yh, 172Hf and "W nuclei. This graph shows that the present work is as equivalently good as the other

formulae.

4. A Comparison with other model equation

In this section we discuss how equation (4) is related to other formulae used in the present calculations.
Holmberg and Lipas [28] noted that the Moment of Inertia & of the deformed nuclei increase with level energy
FE linearly,

3(J) =a+ bE, (16)
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and obtained a two parameter ab formula by using equation (1) and equation (16):
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Figure 15. Comparison between experimental energy with anharmonic vibrator expression (AHV), VMINS3 model and

p- work.

E(J)=a [\/1 T oI+ 1) — 1} . (17)

Later, Zeng et al. [29] illustrated the non linearity relation between & and E in the rotational spectra

for low and high spins. However, they derive a new relation between & and F,

1 2
= -
=52 (\/1+GE+1>, (18)

by using equations (1), (17), (18) and formulated a new energy expression called the pg formula:
1

o= ({(M) (5 (U5 TY

(G CETY)
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Figure 16. Comparison between experimental energy with anharmonic vibrator expression (AHV), VMINS3 model and

p- work.

Zeng et al. [29] gave an alternative derivation of equation (19) from the hydrodynamic model. In this

model the energy of a rotating nucleus is given by the relation

E(J) = % + %C(ﬂJ — Bo)*. (20)

Batra and Gupta [17] proposed a modified version of equation (20) called the VMINS3 model and derived

from the scaling parameter (§; in which the solution of equation (20) is also involved, i.e,

Br=Bo(l+ o1 +02J° +--2). (21)

By limiting to the softness parameter o in the first approximation, they obtained the expression

J(J+1) 9 19
E(J)=——*>—+P . 22
T T ) .
With P = %Cﬂg from equation (5),
E(J)=(a+cJ)J(J+ 1)+ bJ, (23)
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the first approximation reduces to

aJ(J+1)

B(J) = (1+0aJ)

+bJ, where o= —c/a. (24)

The constants a, b and ¢ of both equations are calculated by least squares method. Both equations give
better fit with less average deviations. Results obtained from these equations and by fitting the parameters are
summarized in Figures 15 and 16. The scaling of J can be obtained in the VMI model through varying (5.
Similar results are obtained for Bohr-Mottelson expression (equation (5)) by varying the contribution of three

parameters. Thus, the Bohr-Mottelson expression is more accurate than the VMINS3 equation.

5. Conclusions

Relative ROTE/ E(2]) and relative VIBE/ E(2]) energies exhibit trends opposite of one another. The
axially v-rigid region lies between the anharmonic vibrator limit U(5) and the axially symmetric rotor limit
SU(3) of IBM-1. This is also the region which has been described by the critical point symmetry X(5). The
plot of ROTE/ E(2]) vs. 7o is scattered in the region N < 82, but in other three regions there is exponential
fall, hence saturations attained with different intercepts and slopes. Therefore, the above mentioned formulae
help to explain the structure of nuclei implying that ROTE/ E(2]) does not decrease with—but VIBE/ E(2])
decreases with deformation.

When we correlate 3 and 7y to one another, we obtain a one parameter description of nuclear shapes.

In a complementary way both show decrease in energy; but in R4/, their relative contribution decreases and
increases in complementary way which becomes more informative.

We also find the odd-even staggering (OES) in the ~y-bands helps to distinguish between its rigid triaxial

rotor and 7-soft. We have used the SRF formula to identify the nature of the nuclei by considering 227124 Xe

and 1247128 Ba isotopes. 1227124Xe isotopes show the triaxial nature and 24 7128Ba isotopes show the ~y-soft
behavior. Thus, the present study taken for 227124Xe and 24128 Ba nuclei shows a wide ranging applicability

of the above approach.
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