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Abstract

The asymmetric rotor model (ARM) of collective rotation is used to search for the correlation between

the rotational energy with the asymmetric parameter γ0 for Xe-Pt nuclei. The correspondence of the ratio

ROTE/E(2+
1 ) vs. R4/2(= E(4+

1 )/E(2+
1 )) and γ0 is used to distinguish between the axially symmetric

and triaxial nuclei. The correlation between deformation parameter β and γ0 is studied to understand

the structure of the nuclei. The γ -band energy staggering in low-spin, low-energy spectra of even-even
122−124 Xe and 124−128 Ba nuclei is also discussed. We have compared our results with experimental data

and other theoretical models.
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1. Introduction

The Bohr-Mottelson expression has been widely used for the description of the low energy spectra of the
deformed nuclei that satisfy the rotational limit R4/2 ≥ 3.3 [1]. There are several other formulae that describe

the properties of ground band energy of transitional nuclei. The simplest well known expression for rotational
spectra is

E =
�
2

2�J(J + 1), (1)

where � and J are the moment of inertia (MI) and spin of nuclei, respectively. The Bohr-Mottelson energy

expression for the deformed nuclei [1] is

E(J) = AX + BX2 + CX3, (2)

where X = J(J + 1) works only for the well-deformed nuclei having energy ratio R4/2 ≥ 3.1, the rotational

limit being 10/3. The anharmonic vibrator model expression [2, 3],

E(J) = aJ + bJ2, (3)
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is equivalent to the two parameter Ejiri expression [4] of the ground band energy

E(J) = (a − b)J + bJ(J + 1), (4)

which yields a linear relation of R6/2(= E(6+
1 )/E(2+

1 )) with R4/2 on a Mallmann plot [5]–[6]. However,

the experimental data deviates from the linear plot showing the need of a third term i.e. rotation vibration
interaction (RVI) term

E(J) = aJ(J + 1) + bJ + cJ2(J + 1). (5)

Here, the first term represents the rotational energy (ROTE), second represents the vibrational (VIBE) energy

and the third represents the interaction (INTE) energy. Gupta et al. [7] have studied the effect of rotation on
non-rigid nuclear core with the variation of N , Z from a spherical vibrator to an axially deformed rotor. Gupta

et al. [5] illustrated the systematic variation of two parts of 2+
1 state energy with N , Z ; e.g., first term =6a

is called ROTE, and the sum of VIBE + INTE= 2b + 12c is called the shape fluctuation energy (SFE). The

constants a , b and c are calculated by least square fitting method with level up to Jπ < 12+ , below the back

bending effect. The correlation of ROTE and VIBE with B(E2) values or β states is such that the energy of 2+
1

state decreases and increases in a complementary way. Large deviations from these limiting cases occur for the
transitional nuclei that cannot be easily explained by any perturbation method, e.g., the J(J + 1) expression
of level energies of ground band.

Davydov et al. [8, 9] proposed rigid triaxial asymmetric rotor model(ARM) to explain these deviations
and obtained better results than the axially symmetric rotational model. The centrifugal stretching term in the
J(J + 1) expansion of EJ would be smaller if shape asymmetry parameter γ0 > 0 was assumed. Gupta and

Kavathekar [7] described the interband B(E2) ratios in the rigid triaxial model. The variation of B(E2) with
γ0 is helpful to check the consistency of the model.

Recently, Singh et al., [10] have studied the yrast and γ -band for 120−130Xe nuclei using ARM by

employing the Lipas parameter and commented that the reason of odd even staggering (OES) is the splitting

of γ -band in odd and even spin sequence. The structure of the Kπ = 2+ gamma vibrational bands and the
quasi-gamma bands of even Z -even N nuclei is investigated on a global scale. The yrast band energies, OES
in the γ -band for Xe (A=116-118) and Ce (A=128,132 and 134) chain have been done in the frame work of

Asymmetric Rotor Model [11].

Recently, McCutchan et al. [12] studied the staggering in band energies and the transition between
different structural symmetries in nuclei by using the expression

S(J) =
{E(J) − E(J − 1)} − {E(J − 1) − E(J − 2)}

E(2+
1 )

. (6)

In the present work, we try to search whether the J(J + 1) rule obeys the three energy sequences of yrast and

quasi γ band in Xe and Ba nuclei. Zamfir and Casten [13] examined the values of the staggering indices S(4, 3, 2)

and S(6, 5, 4) obtained from the experimental data of even-even nuclei and examined whether the nuclei are γ -

soft or γ -rigid. Liao [14] had commented that one cannot clearly distinguished between γ -soft and γ -rigid rotor

according to the value of S(4). Liao recommended that S(6), S(8) and S(10) should be studied for testing the

shapes of nuclei( γ -soft or γ -rigid). Here, we will search whether the J(J +1) rule is obeyed in the three energy
sequences of yrast and quasi γ -band. If the rule is obeyed, the nucleus is axially symmetric rotor else it happens
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to be triaxial or γ -soft. It should be kept in mind that the indices ΔE1 = E(3+
1 )− (E(2+

1 )+ E(2+
2 )) = 0. This

condition is not only valid for the γ -rigid rotor but also for the axial rotor. Both axially symmetric and γ -rigid
asymmetric nuclei follow these conditions. Also, ΔE1 is very small as compared to ΔE2 for both cases.

1.1. Present approach

If the K = 2 band follows the axial rotor model with vibration-rotation interaction, one has the energy
spectrum formula

E(J) = AJ(J + 1) − BJ2(J + 1)2. (7)

If B = 0, then S(J) = 0 for all values of A in equation (7). If not, one can use the perturbed rotor formula,

also known as the soft rotor formula (SRF) [15]

E(J) =
J(J + 1)
a(1 + bJ)

, (8)

where a and b are the constant parameters. The values of a and b are fitted by using 2+
γ and 4+

γ energies in

the even sequence and 3+
γ and 5+

γ energies in the odd sequence. For these calculations, experimental data is

taken from www.nndc.bnl.gov [16].

We also study the variation of the ratios of ROTE/E(2+
1 ), VIBE/E(2+

1 ) and SFE/E(2+
1 ) energy with γ0

to understand the difference between axially symmetric and triaxial nuclei. We compare the RVI formula with
other three parameter formula such as anharmonic vibrator (AHV) formula and VMINS3 model [17], which is

the modified version of variational moment of inertia model(VMI) [18], to check the accuracy of this formula.
The variation of γ0 with β is helpful to understand the structure of nuclei.

2. The asymmetry parameter (γ0)

There are several methods to calculate the asymmetry parameter γ0 . One can calculate γ0

(a) from the ratio Rγ = E(2+
2 )/E(2+

1 ) [9];

(b) from the ratio R4/2 [19], indicating that the DF model is valid only for those nuclei which have the ratio

R4/2= 10
3 to 8

3 ;

(c) from the energy of 4+
1 and 2+

2 states [20] and from sum of the absolute B(E2; 2+
1 → 0+

1 ) and B(E2; 2+
2 →

0+
1 ) value [21]. In this method, the sum of the absolute B(E2) values are used to determine the value of

quadrupole moment Q and γ0 .

Varshni and Bose [19] preferred to determine γ0 from R4/2(= E(4+
1 )/E(2+

1 )), thereby excluding nuclei

with R4/2 < 8/3, for which Van Patter [22] noted the large deviations. Gupta et al., [21] used the B(E2) values

to determine γ0 . As these B(E2) values are small and are not easily available with good accuracy, therefore,
γ0 from the level energies should be more reliable. We have derived γ0 from the Rγ values using the equation

that given by Davydov et al. [8]:

γ0 =
1
3

sin−1

[
9
8

(
1 −

(
Rγ − 1
Rγ + 1

)2
)]1/2

, (9)
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for Z =52–78, N =68–78 and N =84–104. In terms of B(E2) values γ0 is equal to

B(E2 : 2+
2 → 0+

1 )
B(E2 : 2+

1 → 0+
1 )

=

√
9 − 8 sin2 3γ0 − 3 + 2 sin2 3γ0√
9 − 8 sin2 3γ0 + 3 − 2 sin2 3γ0

. (10)

From the above relation we have also calculated β . According to the approximate empirical Grodzins relation
[23]

E(2+
1 ) · B(E2; 2+

1 → 0+
1 ) = 2.5 × 10−3Z2A−1 [in units of e2b2MeV], (11)

hence

E(2+
1 ) =

2.5× 10−3Z2A−1

B(E2; 2+
1 → 0+

1 )
[in units of e2b2MeV]. (12)

On relating β and E(2+
1 ) we obtain

β2
G
∼=

1224
E(2+

1 )A7/3
, (13)

where βG is a constant. Hence

β = βG

⎛
⎝9 −

√
81− 72 sin2(3γ0)

4 sin2(3γ0)

⎞
⎠ , (14)

3. Results and discussion

3.1. Variation of ROTE /E(2+
1 ) versus R4/2

In quadrant-IV, 66 ≤ N ≤ 82 (Xe–Sm), region of neutron deficient nuclei ROTE/E(2+
1 ) varies linearly

with R4/2 ratio and lies between 2.1 and 2.8 (see Figure 1). At R4/2 = 2.1, the 130−132Xe nuclei behaves like

a vibrator SU(5) having low value of ROTE/E(2+
1 ) (approximately 35%) and at R4/2 = 2.2 the nuclei attain

the E(5) symmetry. The neutron deficient Xe, Ba, Ce, Nd and Sm nuclei having ROTE/E(2+
1 ) = 75% are

γ -soft and lie between the vibrator and deformed γ -soft structure. This corresponds to SU(5)-O(6) transition

region, in the language of the interacting boson approximation (IBA) [24]. Next in quadrant-I, N > 82, of

small neutron number i.e. N = 84 − 88, the R4/2 ratio of Gd lies between 1.8–2.2, having ROTE/E(2+
1 ) =

20%. Hence these nuclei are vibrational [SU(5)] in nature. For R4/2 = 3.3 and ROTE/E(2+
1 ) = 100% all

these nuclei are axially symmetric in nature. In quadrant II, N < 104 at N = 90, the Er nuclei behave as

γ -soft, having R4/2 = 2.4 and ROTE/ E(2+
1 ) = 20%. But with increasing neutron number, R4/2 increases

and deformation also increases hence ROTE/ E(2+
1 ) = 100%, therefore, these nuclei are example of SU(3)

symmetry. Next, in quadrant-III, N>104, Pt nuclei lie below in the curve because at low value of R4/2(≤ 3.0),

it is not deformed. At R4/2 = 2.9, there is a critical point symmetry i.e X(5) where second order transition

takes place.
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Figure 1. Variation of ROTE/E(2+
1 ) as a function of R4/2 for N = 68–126 in all four quadrants (Q-I-IV).

3.2. Variation of ROTE/ E(2+
1 ) versus γ0

In Figure 2, for N < 82 (quadrant-IV), the ratio ROTE/E(2+
1 ) for Xe-Sm nuclei shows a monotonic

linear fall with increasing γ0 . Here, γ0 values lies between 22◦ and 30◦ , indicating that these neutron deficient
nuclei lie in the [SU(5)–O(6)] region, i.e. the γ -soft region where the potential is γ -independent. Even at

γ0 = 22◦ ROTE/E(2+
1 ) is approximately 75%, i.e., a large rotational energy at small R4/2 (= 2.8). In Sm

nuclei for small neutron number, i.e., N = 82–86, γ0 is higher but ROTE/E(2+
1 ) energy is small, hence these

nuclei lie in the SU(5) region. Next, at γ0 = 8◦ , for ROTE/E(2+
1 ) = 100%, Sm, Gd and Dy nuclei are axially

symmetric in nature. 156Er nuclei, having R4/2= 2.3, lie between E(5) and γ -soft nuclei at lower value of

ROTE/E(2+
1 ) � 20%. Similarly, at N = 90, the relative ROTE/E(2+

1 ) is 50% at R4/2 = 2.7, containing

small rotational energy part and behave as O(6) nuclei. But in quadrant II at N = 92–102, the value of γ0

is less but ROTE/E(2+
1 ) rises to 100%, hence these nuclei are axially symmetric rotor having R4/2 = 3.3.

For N ≥ 104 (quadrant III) the datum of Pt nuclei lies below the curve because these nuclei do not get

deformed below 16◦ , hence here value of ROTE/E(2+
1 ) is 100%. The behavior of VIBE/E(2+

1 ) is opposite to

ROTE/E(2+
1 ) given by

YJ = ROTE/E(2+
1 ) = B + A[exp(C · X)], (15)
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where A , B and C are constant parameters obtained from the curve and X is the x -axis scale factor. The
values of fitting parameters are listed in the graphs for all the four regions. In Figures 3 and 4 we see the variation

of VIBE/E(2+
1 ) with R4/2 and γ0 . The VIBE/E(2+

1 ) energy decreases for both R4/2 and γ0 . Similarly, the

SFE/E(2+
1 ) energy shows same trend as that of the VIBE/E(2+

1 ) energy (see Figures 5 and 6).
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Figure 2. Variation of ROTE/E(2+
1 ) as a function of γ0 for N = 68–126 in all four quadrants (Q-I-IV).

3.3. Study of odd-even staggering in 122−124Xe and 124−128Ba nuclei

Thiamova [26] studied the staggering of γ -band level energies and compared it with the IBM model. The

level energies for the γ -band in 122−124Xe and 124−128Ba nuclei have been plotted. In Figure 9 we see the

variation of staggering factor S(J) with spin J for 122Xe and 124Xe nuclei. The spacing between odd even spin

levels in the present work are in close agreement with experimental values for S(4), S(5) and S(6). For higher

values of J , separation increases between evaluated and experimental values of S(J), but in small amounts.

In Figure 10 we see the variation of S(J) with J for 124Ba and 126Ba. The calculated value of S(J) matches

excellently with the experimental data for S(4) to S(10) factor in 124Ba while a small deviation in S(9) and

S(11) is found in 126Ba nuclei. Next we see the variation of 128Ba nuclei in Figure 11. The calculated and

experimental values of S(J) shows excellent agreement up to S(10). This means that there is a small energy
difference between there energy levels. Next we see the comparison between the experimental and calculated
values of the ground band and the gamma band energies.
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Figure 3. Variation of VIBE/E(2+
1 ) as a function of R4/2 for N = 68–126 in all four quadrants (Q-I-IV).
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Figure 7 we see the variation of γ0 and β . Both these parameters show close correlation. The variation
of γ0 and β for Hf-Pt nuclei are shown by Esser et al. [25]. We also correlate it for the light nuclei and find
that the correlation is excellent. Therefore, this variation suggests that β remains constant with γ0 for soft
nuclei as compared to the well deformed nuclei. In Figure 8 we see the variation of γ0 with boson number NB .
The asymmetric parameter γ0 is an effective parameter, therefore the study of all the nuclei is worthwhile.
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Figure 10. Signature splitting S(J) is plotted versus spin

J for 124−126 Ba nuclei.
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When we see the variation of S(J) with R4/2 (see Figure 12), the even staggering factors S(4), S(6)

and S(8) attain negative value and the odd staggering factors such as S(5) and S(7) have positive values. The

ratio R4/2 lies between 2.4–2.9, which means nuclei are in the range of O(6) and X(5) symmetry. When R4/2

is 2.4, S(4) = −0.5 and S(5) = 0.5, in the case of Ba nuclei. As R4/2 approaches X(5) symmetry, the value

of S(8) becomes equal to −2.8, which is the minimum value; but on the other side, for the same R4/2 , S(7)

attains maximum value of staggering factor, i.e S(J) = 2.3.
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Figure 11. Signature splitting S(J) is plotted versus spin

J for 128 Ba nuclei.

Figure 12. The experimental S(J) as a function of R4/2

for Ba nuclei.

In Figure 13 we plot the 122−124Xe nuclei, which shows good agreement up to J = 8+ . Beyond this

there is a fall in the calculated energies. In the case of gamma band, a close agreement is found up to J = 5+

after which there is fall in gamma band energies. Next we compare the calculated and experimental values for
124−126Ba nuclei. The ground band energy shows close agreement up to J = 8+ similar to that of Xe nuclei. But

in case of gamma bands the agreement is good up to J = 11+ for 126Ba nuclei and J = 10+ for 124Ba nuclei (see

Figure 14). We took another test of triaxiality on the basis of energy relation ΔE1 = E(3+
1 )−

[
E(2+

1 ) + E(2+
2 )

]
for triaxial nucleus and ΔE2 = E(3+

1 )−
[
2E(2+

1 ) + E(4+
1 )

]
for γ -soft nucleus given by Wilets and Jean[27]. A

large value of ΔE1 and small value of ΔE2 reflects a γ -soft character. The difference ΔE1 is low while ΔE2

is large for 122−124Xe which reflects the triaxial nature. For 124−128Ba , ΔE1 is large and ΔE2 is small which
show the γ -soft nature. The values of ΔE1 and ΔE2 are presented in Table.

Table. The experimental and calculated difference ΔE1 and ΔE2

Nuclei 122Xe 124Xe 124Ba 126Ba 128Ba

Exp.ΔE1 40.04 46.1 60 106 157
Exp.ΔE2 275.72 339.2 51 13 5
Th.ΔE1 48.6 46.1 59.3 106.6 155.9
Th.ΔE2 226.4 339.2 51 12.7 6.8
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3.4. Comparison with three parameter formulae

In this subsection we show a comparison of present work (RVI) with other formulae such as AHV and

VMINS3. In Figure 15 we have taken 120–122Xe, 126Ba and 152Sm nuclei. The present work shows good

agreement with the experimental energy up to 14+ ground energy level. In Figure 16 we have taken 162Dy,
164Yb, 172Hf and 174W nuclei. This graph shows that the present work is as equivalently good as the other
formulae.

4. A Comparison with other model equation

In this section we discuss how equation (4) is related to other formulae used in the present calculations.

Holmberg and Lipas [28] noted that the Moment of Inertia � of the deformed nuclei increase with level energy
E linearly,

�(J) = a + bE, (16)
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and obtained a two parameter ab formula by using equation (1) and equation (16):
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Figure 15. Comparison between experimental energy with anharmonic vibrator expression (AHV), VMINS3 model and

p. work.

E(J) = a
[√

1 + bJ(J + 1) − 1
]
. (17)

Later, Zeng et al. [29] illustrated the non linearity relation between � and E in the rotational spectra
for low and high spins. However, they derive a new relation between � and E ,

� =
1

2ab

(√
1 +

2
a
E + 1

)
, (18)

by using equations (1), (17), (18) and formulated a new energy expression called the pq formula:

E(J) =a

({(bJ(J + 1)
2

)2

+
[(bJ(J + 1)

2

)4

+
(bJ(J + 1)

3

)3] 1
2
} 1

3

+
(
{
(bJ(J + 1)

2

)2

−
[(bJ(J + 1)

2

)4

+
(bJ(J + 1

3

)3] 1
2
} 1

3
)

. (19)
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Figure 16. Comparison between experimental energy with anharmonic vibrator expression (AHV), VMINS3 model and

p. work.

Zeng et al. [29] gave an alternative derivation of equation (19) from the hydrodynamic model. In this
model the energy of a rotating nucleus is given by the relation

E(J) =
J(J + 1)

2βJ
+

1
2
C(βJ − β0)2. (20)

Batra and Gupta [17] proposed a modified version of equation (20) called the VMINS3 model and derived

from the scaling parameter βJ in which the solution of equation (20) is also involved, i.e,

βJ = β0(1 + σ1J + σ2J
2 + · · ·). (21)

By limiting to the softness parameter σ1 in the first approximation, they obtained the expression

E(J) =
J(J + 1)

2β0(1 + σ1J)
+ Pσ2

1J
2. (22)

With P = 1
2
Cβ2

0 from equation (5),

E(J) = (a + cJ)J(J + 1) + bJ, (23)
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the first approximation reduces to

E(J) =
aJ(J + 1)
(1 + σJ)

+ bJ, where σ = −c/a. (24)

The constants a , b and c of both equations are calculated by least squares method. Both equations give
better fit with less average deviations. Results obtained from these equations and by fitting the parameters are
summarized in Figures 15 and 16. The scaling of J can be obtained in the VMI model through varying βJ .
Similar results are obtained for Bohr-Mottelson expression (equation (5)) by varying the contribution of three
parameters. Thus, the Bohr-Mottelson expression is more accurate than the VMINS3 equation.

5. Conclusions

Relative ROTE/E(2+
1 ) and relative VIBE/E(2+

1 ) energies exhibit trends opposite of one another. The

axially γ -rigid region lies between the anharmonic vibrator limit U(5) and the axially symmetric rotor limit

SU(3) of IBM-1. This is also the region which has been described by the critical point symmetry X(5). The

plot of ROTE/E(2+
1 ) vs. γ0 is scattered in the region N < 82, but in other three regions there is exponential

fall, hence saturations attained with different intercepts and slopes. Therefore, the above mentioned formulae

help to explain the structure of nuclei implying that ROTE/E(2+
1 ) does not decrease with—but VIBE/E(2+

1 )
decreases with deformation.

When we correlate β and γ0 to one another, we obtain a one parameter description of nuclear shapes.
In a complementary way both show decrease in energy; but in R4/2 their relative contribution decreases and

increases in complementary way which becomes more informative.

We also find the odd-even staggering (OES) in the γ -bands helps to distinguish between its rigid triaxial

rotor and γ -soft. We have used the SRF formula to identify the nature of the nuclei by considering 122–124Xe

and 124–128Ba isotopes. 122–124Xe isotopes show the triaxial nature and 124–128Ba isotopes show the γ -soft

behavior. Thus, the present study taken for 122–124Xe and 124–128Ba nuclei shows a wide ranging applicability
of the above approach.
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