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Abstract

In this paper we discuss the variation law for Hubble’s parameter, average scale factor in spatially

homogenous anisotropic Bianchi Type V space-time that yields a constant value deceleration parameter.

Using the law of variation for Hubble’s parameter, exact solutions of Einstein’s field equations are obtained

for Bianchi-V space time filled with viscous fluid in two different cases where the universe exhibits power

law and exponential expansion. We investigate a number of solutions with constant and time varying

cosmological constant together with variable and constant bulk viscosity. We find that the constant value

of deceleration parameter is reasonable for the present day universe and gives an appropriate discussion of

evolution of universe with the recent observations of type Ia supernovae. The detailed study of physical and

kinematical properties of the model is also discussed.

Key Words: Hubble’s parameter (HP), deceleration parameter (DP), anisotropy parameter (AP), cosmol-

ogy

1. Introduction

At the present state of evolution, the universe is spherically symmetric and the matter distribution in
it is, on the whole, isotropic and homogeneous. In its early stages the universe could not have had such a
smoothed out picture because near the big bang singularity it would be in a highly dense and energetic state,
hence isotropic. Hence the anisotropy of the cosmic expansion, which came to be damped out over the course
of cosmic evolution, is an important quantity of study.

The cosmological models which are spatially homogenous and anisotropic play significant roles in the
description of the universe at its early stages of evolution. Bianchi I-IX spaces are very useful to constructing
special homogeneous cosmological models. (The importance of Bianchi type V model is due to the fact that

the space of constant negative curvature is contained in it as a special case.) These models can be used to
analyze aspects of the physical universe which pertain or which may be affected by anisotropy in the rate
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of expansion, for example, the cosmic microwave background radiation, nucleosynthesis in the early universe
and the question of isotropization of the universe itself (MacCallum, [1]). Spatially homogeneous cosmologies
also play an important role in the attempt to understand the structure and the properties of the space of all
cosmological solutions of Einstein’s field equations. A spatially homogeneous cosmology is said to be tilted
(Ellis and King [2]) if the fluid velocity vector is not orthogonal to the group of orbits, otherwise the model is

said to be non tilted (King and Ellis [3]).

A tilted model is spatially homogeneous relative to observers whose world line are orthogonal relative to
group orbits become time like. This means that the models are no longer spatially homogeneous (Collins and

Ellis [4]).

Most cosmological models assume that the mater in the universe can be described by dust (a pressureless

distribution) or at the early stages of universe viscous effects do play a role (Israel and Vardalas [5], Kilmek [6],

Weinberg [7]). For example, the existence of bulk viscosity is equivalent to slow process of restoring equilibrium

states (Landau and Lifchitz [8]). The observed physical phenomena such as the large entropy per baryon and
remarkable degree of isotropy of the cosmic microwave background radiation suggest analysis of dissipative
effects in cosmology. Bulk viscous models have prime roles in getting inflationary phases of the universe [9–

15]. Bulk viscosity driven inflation is primarily due to the negative bulk viscous pressure giving rise to a total
negative effective pressure which may overcome the pressure due to the usual gravity of matter distribution
in the universe and provide an impetus to drive it apart. Bulk viscosity is associated with the GUT phase
transition and string creation. Thus, we should consider the presence of a material distribution other than a
perfect fluid to have realistic cosmological models (Gron, [16]) for a review on cosmological models with bulk
viscosity.

The model studied by Murphy [17] possessed an interesting feature in that the big bang type singularity
of infinite space time curvature does not occur to be finite past. However, the relationship assumed by Murphy
between the viscosity coefficient and the matter density is not acceptable at large density. The effect of bulk
viscosity on cosmological evolution has been investigated by a number of authors in the framework of general
relativity (Pavon [18], Padmanabhan and Chitre [19], Johri and Sudarshan [20], Maartens [21] , Zimdahl [22],

Santos et al. [23], Pradhan et al. [24], Kalyani and Singh [25], Singh et al. [26], Pradhan et al. [27–29]) This

motivates to study cosmological bulk viscous fluid model. Banerjee and Sanyal [30] have considered Bianchi
Type V cosmologies with viscosity and heat flow. It has also been shown that it is possible for dissipative Bianchi
type V universe model not to be in thermal equilibrium in their early stages. Coley [31] have investigated Bianchi
Type V spatially homogenous with perfect fluid cosmological model which contains both viscosity and heat flow.
Bali and Meena [32] have investigated two conformally flat tilted Bianchi type V cosmological models filled with
perfect fluid and heat conductivity. Conformally flat tilted Bianchi type V cosmological models in the presence
of a bulk viscous fluid are investigated by Pradhan and Rai [33]. Recently Shriram et al. [34] have investigated
the variation law for Hubble’s parameter with average scale factor in a spatially homogenous anisotropy Bianchi
type-V space-time model.

The cosmological constant Λ problem is regarded as one of the important unsolved problem in cosmology.
In recent years, models with cosmological constant Λ have drawn considerable attention among researchers for
various aspects such as the age problem, classical tests, observational constraints on Λ, structure formation and
gravitational lenses have been discussed in the literature. Some of the recent discussions on the cosmological
constant by Ratra and Peebles [35], Dolgov [36–38]. Sahni and Starbinsky [39] have pointed out that in the
absence of any interaction with matter or radiation, the cosmological constant remains a “constant”. However in
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the presence of interactions with matter or radiation, a solution of Einstein equations and the assumed equation
of covariant conservation of stress-energy with a time varying Λcan be found. These recent observations strongly

favour a significant and a positive value of Λwith magnitude Λ
(
G�

/
c3

)
≈ 10−123 . Riess et al. [40–43] have

recently presented an analysis of 156 SNe including a few at z > 1.3from the Hubble Space Telescope (HST)

“GOOD ACS” Treasury survey. They conclude to the evidence for present acceleration q0 < (q0 ≈ −0.7) .

Observation by Knop et al. [44] of type Ia Supernovae (SNe) allow us to probe the expansion history of the
universe leading to the conclusion that the expansion of the universe is accelerating.

In this paper, we consider a spatially homogenous anisotropy Bianchi type-V space-time in which the
source of matter distribution is viscous fluid with a cosmological constant. The purpose of the present paper
is to investigate the behaviour of a viscous fluid with a cosmological constant in the framework of a Bianchi
type V space time. It is not an easy task to construct an exact solution to the Einstein’s field equation due
to nonlinearity of the differential equations which arise from general relativity. An attempt has been made
to formulate a law of variation for Hubble’s parameter in anisotropic Bianchi type-V space-time that yields a
constant value of deceleration parameter. The Law together with the Einstein’s field equation leads to a number
of new solutions of Bianchi type-V space-time. The law explicitly determine the scale factor, explicit form of
pressure, energy density and some other cosmological parameters are obtained for two different physical models.
We also discuss the physical and kinematical behaviour of the different parameters such as expansion scalar,
anisotropic pressure and shear scalar in these two singular and non singular cosmological models with constant
DP.

2. Model and field equations

The spatially homogeneous and anisotropic Bianchi V space time is described by the line element

ds2 = −dt2 + a2
1dx2 + a2

2e
−2mxdy2 + a2

3e
−2mxdz2, (1)

where a1 , a2 and a3 are the metric functions of cosmic time t and m is constant.
The spatial volume of this model is given by the relation

R3 = a1a2a3. (2)

We define R = (a1a2a3)
1
3 as the average scale factor so that the Hubble’s parameter in anisotropic models may

be defined as

H =
Ṙ

R
=

1
3

(
ȧ1

a1
+

ȧ2

a2
+

ȧ3

a3

)
, (3)

where a dot over symbols denote derivative with respect to the cosmic time t.

Also, we have

H =
1
3

(H1 + H2 + H3) , (4)

where H1 = ȧ1
a1

, H2 = ȧ2
a2

, and H3 = ȧ3
a3

are directional Hubble’s factors in the directions of x, y and z ,

respectively.
The field equations in case of perfect fluid are

Rj
i −

1
2
Rgj

i = −T j
i , (5)
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with
T j

i = (ρ + p) uiu
j + pgj

i − Λ, (6)

where p = p − ξθ , giju
iuj = −1; ui is the four velocity vector; Rij is the Ricci tensor; R is the Ricci scalar;

ξ is the bulk viscosity, θ is the expansion scalar; and ρ and p , respectively, are the energy density and isotropic
pressure of the fluid.

In a commoving coordinate system, Einstein’s field equations (5) for the anisotropic Bianchi type-V space

time (1), in case of (6), read as

ä2

a2
+

ä3

a3
+

ȧ2ȧ3

a2a3
− m2

a2
1

= −p + Λ, (7)

ä1

a1
+

ä3

a3
+

ȧ1ȧ3

a1a3
− m2

a2
1

= −p + Λ, (8)

ä1

a1
+

ä2

a2
+

ȧ1ȧ2

a1a2
− m2

a2
1

= −p + Λ, (9)

ȧ1ȧ2

a1a2
+

ȧ2ȧ3

a2a3
+

ȧ1ȧ3

a1a3
− 3m2

a2
1

= ρ + Λ, (10)

2
ȧ1

a1
− ȧ2

a2
− ȧ3

a3
= 0. (11)

The equation of state is taken to be of the usual form, viz.,

p = (γ − 1) ρ, (0 ≤ γ ≤ 2) . (12)

3. Variation law for Hubble’s parameter

In order to solve Einstein’s field equations, we normally assume a form for the matter content or suppose
that the space time admits killing vector symmetries. The Einstein field equations (7)–(11) are a coupled
system of highly non linear differential equations and there are no standard methods for solving them. Kramer
et al. [45] have pointed out that most authors solve the Einstein’s field equations with a stress energy tensor
of perfect fluid type by assuming an equation of state linking the pressure p and energy density ρ in order to
build analytical methods near the singularity. Davidson [46] and later many others (Coley and Tupper [47])
have considered models with variable equation of state, which essentially deals with the Friedman Robertson
Walker (FRW) metric. Law of variation for Hubble’s parameter was first proposed by Berman [48] in FRW

models and that yields a constant value of deceleration parameter. Recently Singh and Kumar [49–51] have

proposed a similar law of variation for Hubble’s parameter in locally rotationally symmetric (LRS) Bianchi type

I, II space times, that yields a constant value of deceleration parameter. Reddy et al. [52, 53] have presented
LRS Bianchi type I models with constant DP in scalar tensor and scale covariant theories of gravitation.

In order to obtain physically realistic solutions, one has to make assumptions generally at the cost of
physics in the problem or for mathematical convenience. Solutions of field equations can be generated by
applying the law of variation of Hubble’s parameter proposed by Berman [54] which yields a constant value of
DP. The law of variation for Hubble’s parameter gives a new approach for solving field equations that is quite
general and suitable for the description of present day universe. In this paper, we propose that the law to be
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examined for the variation of Hubble’s parameter which yields a constant value of DP in anisotropic Bianchi
type-V space time is

H = D (a1a2a3)
−n

3 , (13)

where D > 0 and n ≥ 0 are constants.
The deceleration parameter q is defined by

q = − 3
θ2

[
θ,αuα +

1
3
θ2

]
.

Therefore,

q = −RR̈

R2
. (14)

From equations (3) and (13), we get

1
3

(
ȧ1

a1
+

ȧ2

a2
+

ȧ3

a3

)
= D (a1a2a3)

−n
3 . (15)

This on integration leads to

a1a2a3 = (nDt + c1)
3
n for n �= 0 (16)

a1a2a3 = c2e
3D t for n = 0 (17)

Here, c1 and c2 are positive constants of integration.

Now substituting (16) into (14), we get

q = n − 1. (18)

This shows that the deceleration parameter is constant for this model. It may be pointed out that the above law
refers to anisotropic Bianchi type V space time in any context, i.e. in any theory that is based on anisotropic
Bianchi type V space time.

4. Solution of field equations

From equations (7), (8) and (9), we obtain

ȧ1

a1
− ȧ2

a2
=

k1

R3
(19)

ȧ2

a2
− ȧ3

a3
=

k2

R3
. (20)

From (19) and (20), the metric functions can be explicitly written as

a1 = m1R exp
(

x1

∫
dt

R3

)
(21)

a2 = m2R exp
(

x2

∫
dt

R3

)
(22)
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a3 = m3R exp
(

x3

∫
dt

R3

)
, (23)

where x1, x2, x3, m1 , m2, m3 are arbitrary constants of integration satisfying the equality

m1m2m3 = 1, x1 + x2 + x3 = 0. (24)

4.1. Cosmology for n �= 0

Using relation (16) in (21)–(23), we get the following expressions for scale factors:

a1 = m1 (nDt + c1)
1
n exp

(
x1

D (n − 3)
(nDt + c1)

n−3
n

)
, (25)

a2 = m2 (nDt + c1)
1
n exp

(
x2

D (n − 3)
(nDt + c1)

n−3
n

)
, (26)

a3 = m3 (nDt + c1)
1
n exp

(
x3

D (n − 3)
(nDt + c1)

n−3
n

)
. (27)

The pressure and energy density are given by

p − 3Dξ (nDt + c1)
−1 − Λ = D2 (2n − 3) (nDt + c1)

−2 −
(
x2

2 + x2
3 + x2x3

)
(nDt + c1)

− 6
n

+m2m−2
1 (nDt + c1)

− 2
n exp

(
− 2x1

D (n − 3)
(nDt + c1)

n−3
n

)
, (28)

ρ + Λ = 3D2 (nDt + c1)
−2 + (x1x2 + x2x3 + x1x3) (nDt + c1)

− 6
n

−3m2m−2
1 (nDt + c1)

− 2
n exp

(
− 2x1

D (n − 3)
(nDt + c1)

n−3
n

)
. (29)

In view of (24), one may observe that the solutions (25)–(29) represent exact solutions of the Einstein field

equations (7)–(11). Now we find expressions for some other cosmological parameters of the model. The
anisotropy parameter A is defined as

A =
1
3

3∑
i=1

[
Hi − H

H

]2

. (30)

The directional Hubble factors Hi(i = 1, 2, 3) as defined in (4) are given by

Hi = D (nDt + c1)
−1 + xi (nDt + c1)

− 3
n (31)

The expansion scalar is given by the equality

θ = 3H = 3D (nDt + c1)
−1

. (32)

Using (31) and (32), in (30) we get

A =
1

3D2

(
x2

1 + x2
2 + x2

3

)
c−2
2 (nDt + c1)

2n−6
n . (33)
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The volume and shear scalar of the model are given by

R3 = (nDt + c1)
3
n (34)

2σ2 =
1
3

[
(x1 − x2)

2 + (x2 − x3)
2 + (x3 − x1)

2
]
(nDt + c1)

− 6
n . (35)

4.1.1. Model with constant Λ-term and ξ (t)

In this case equations (28) and (29) together with (12) yield the expressions for energy density, isotropic pressure
and bulk viscosity are, respectively, given by

ρ = 3D2 (nDt + c1)
−2 + (x1x2 + x2x3 + x1x3) (nDt + c1)

− 6
n

−3m2m−2
1 (nDt + c1)

− 2
n exp

(
− 2x1

D (n − 3)
(nDt + c1)

n−3
n

)
− Λ, (36)

p = (γ − 1)
[
3D2 (nDt + c1)

−2 + (x1x2 + x2x3 + x1x3) (nDt + c1)
− 6

n

−3m2m−2
1 (nDt + c1)

− 2
n exp

(
− 2x1

D (n − 3)
(nDt + c1)

n−3
n

)
− Λ

]
, (37)

ξ =
(

γ − 2n

3

)
D (nDt + c1)

−1 +
[
γ (x1x2 + x2x3 + x1x3) − x1x2 − x1x3 + x2

2 + x2
3

]
· (nDt + c1)

−6+n
n

3D

+
(

4
3
− γ

)
m2m−2

1 (nDt + c1)
−2+n

n exp
(
− 2x1

D (n − 3)
(nDt + c1)

n−3
n

)
− γΛ

3D
(nDt + c1) . (38)

It is observed that all the quantities diverge at t = 0. At late times, the energy density converges to −Λ. So
positivity of ρ is ensured only for Λ < 0. The bulk viscosity diverges as t → ∞ , even for Λ < 0, this shows
unphysical nature of the model. Thus, we find that the solutions do not provide a physically realistic model in
the presence of a non-zero and constant Λ.

4.1.2. Model with variable Λ and constant ξ

Assuming that the coefficient of bulk viscosity is constant i.e. ξ (t) = ξ0 = cons tan tthen

(28) and (29) together with (12) yield the following expressions for energy density, pressure and cosmo-
logical constant

ρ =
1
γ

[
2nD2 (nDt + c1)

−2 +
(
x1x2 + x1x3 − x2

2 − x2
3

)
(nDt + c1)

− 6
n

−2m2m−2
1 (nDt + c1)

− 2
n exp

(
− 2x1

D (n − 3)
(nDt + c1)

n−3
n

)
+ 3Dξ0 (nDt + c1)

−1

]
, (39)

p =
(γ − 1)

γ

[
2nD2 (nDt + c1)

−2 +
(
x1x2 + x1x3 − x2

2 − x2
3

)
(nDt + c1)

− 6
n

−2m2m−2
1 (nDt + c1)

− 2
n exp

(
− 2x1

D (n − 3)
(nDt + c1)

n−3
n

)
+ 3Dξ0 (nDt + c1)

−1

]
(40)
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Λ =
(

3 − 2n

γ

)
D2 (nDt + c1)

−2 +

[
(x1x2 + x2x3 + x1x3) −

(
x1x2 + x1x3 − x2

2 − x2
3

)
γ

]
(nDt + c1)

− 6
n

−
(

3 − 2
γ

)
m2m−2

1 (nDt + c1)
− 2

n exp
(
− 2x1

D (n − 3)
(nDt + c1)

n−3
n

)
− 3

Dξ0

γ
(nDt + c1)

−1

]
, (41)

where γ �= 0.

As the evolution progress, the energy density, pressure and cosmological constant decreases, the solutions
are singular at t = 0. At late times these quantities are negligible.

4.1.3. Model with variable Λ and ξαρ

Let us assume that ξ (t) = ξ0ρ . Then from equations (28) and (29) together with (12) we obtain the expression
for energy density, pressure, bulk viscosity and cosmological constant as follows:

ρ =
1[

γ − 3Dξ0 (nDt + c1)
−1

] [
2nD2 (nDt + c1)

−2 +
(
x1x2 + x2x3 − x2

2 − x2
3

)
(nDt + c1)

− 6
n −

2m2m−2
1 (nDt + c1)

− 2
n exp

(
− 2x1

D (n − 3)
(nDt + c1)

n−3
n

)]
, (42)

p =
(γ − 1)[

γ − 3Dξ0 (nDt + c1)
−1

] [
2nD2 (nDt + c1)

−2 +
(
x1x2 + x2x3 − x2

2 − x2
3

)
(nDt + c1)

− 6
n −

2m2m−2
1 (nDt + c1)

− 2
n exp

(
− 2x1

D (n − 3)
(nDt + c1)

n−3
n

)]
, (43)

ξ =
ξ0[

γ − 3Dξ0 (nDt + c1)
−1

] [
2nD2 (nDt + c1)

−2 +
(
x1x2 + x2x3 − x2

2 − x2
3

)
(nDt + c1)

− 6
n

− 2m2m−2
1 (nDt + c1)

− 2
n exp

(
− 2x1

D (n − 3)
(nDt + c1)

n−3
n

)]
, (44)

Λ =

⎡
⎣3 − 2n[

γ − 3Dξ0 (nDt + c1)
−1

]
⎤
⎦ D2 (nDt + c1)

−2 +

⎛
⎝x1x2 + x2x3 + x1x3 −

(
x1x2 + x2x3 − x2

2 − x2
3

)[
γ − 3Dξ0 (nDt + c1)

−1
]
⎞
⎠

×(nDt + c1)
− 6

n−

⎡
⎣3− 2n[

γ−3Dξ0 (nDt + c1)
−1

]
⎤
⎦ m2m−2

1 (nDt + c1)
− 2

n exp
(
− 2x1

D (n − 3)
(nDt + c1)

n−3
n

)⎤
⎦ , (45)

We observe that the energy density ρ , cosmological constant Λ decrease very sharply due to presence of viscous
term.

Physical behaviour of the model

At t = t0 = −c1
nD it is observed that the spatial volume is zero and the expansion scalar is infinite, which

corresponds to the universe beginning its evolution with zero volume with an infinite rate of expansion. The
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scale factor vanishes at t = t0 , hence the model has a point singularity at the initial epoch. The pressure, energy
density and shear scalar diverges at the initial singularity. For n < 3, the anisotropy of expansion is infinity
and will be zero for n > 3at the initial epoch. Hence the universe exhibits power law expansion as the scalar
decreases; hence the rate of expansion slows down with increase in time. The energy density and pressure along
with shear scalar are infinite at t = t0 , clearly indicating the point of singularity at this epoch. The directional
Hubble parameter and the generalized Hubble parameter are both infinite at this singularity point. For large
time the expansion will be completely exhaust and the model will become isotropic at the ratio σ

θ
→ 0. Thus

the model represent shearing, non rotating and expanding model of the universe with a big bang approaching

isotropy at late times. The integral
t∫

t0

R (t′)dt′ = 1
D(n+1) (nDt′ + c1)

t
t0

is finite provided n �= −1. Therefore

a horizon exists in this model. Further, we observe that for n = 3 the spatial volume grows linearly with
cosmic time. For n ≤ 1,we get−1 < q ≤ 0, which shows that the model represent an accelerating model of the
universe. For n > 1, q > 0, which implies a decelerating model of the universe. Recent observations of type Ia
Supernovae (Perlmutter [55–57], Riess et al .[58, 59], Tonry et al. [60], Knop et al. [61] and John [62]) represent
that universe is accelerating with the deceleration parameter lying somewhere in the range −1 < q ≤ 0. It
follows that the solutions obtained in this model are consistent with observations.

4.2. Cosmologies for n = 0

Using (17) in (21)–(23), we get the following expressions for scale factors:

a1 = m1c
1
3
2 exp

(
Dt − x1

3c2D
e−3Dt

)
, (46)

a2 = m2c
1
3
2 exp

(
Dt − x2

3c2D
e−3Dt

)
, (47)

a3 = m3c
1
3
2 exp

(
Dt − x3

3c2D
e−3Dt

)
. (48)

The pressure and energy density are given by

p − 3ξD − Λ = −3D2 −
(
x2

2 + x2
3 + x2x3

)
c−2
2 e−6Dt + m2m−2

1 c
− 2

3
2 exp 2

(
x1

3c2D
e−3Dt − Dt

)
, (49)

ρ + Λ = 3D2 + (x1x2 + x2x3 + x1x3) e−6Dt − 3m2m−2
1 c

− 2
3

2 exp 2
(

x1

3c2D
e−3Dt − Dt

)
. (50)

Solutions (46)–(50) represent exact solutions of field equations (7)–(11). The other cosmological parameters of
the model have the following expressions:

Hi = D + xic
−1
2 e−3Dt (i = 1, 2, 3) , (51)

θ = 3H = 3D, (52)

R3 = c2e
3Dt, (53)

A =
1

3D2

(
x2

1 + x2
2 + x2

3

)
e−6Dtc−2

2 , (54)
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2σ2 =
1
3

[
(x1 − x2)

2 + (x2 − x3)
2 + (x3 − x1)

2
]
e−6Dtc−2

2 . (55)

4.2.1. Model with constant Λ-term and ξ(t)

In this case, equations (49) and (50) together with (12) we find the following solutions:

ρ = 3D2 + (x1x2 + x2x3 + x1x3) e−6Dt − 3m2m−2
1 c

− 2
3

2 exp 2
(

x1

3c2D
e−3Dt − Dt

)
− Λ, (56)

p = (γ − 1)
[
3D2 + (x1x2 + x2x3 + x1x3) e−6Dt − 3m2m−2

1 c
− 2

3
2 exp 2

(
x1

3c2D
e−3Dt − Dt

)
− Λ

]
, (57)

ξ = γD +
[(

x2
2 + x2

3 + x2x3

)
c−2
2 + (γ − 1) (x1x2 + x2x3 + x1x3)

] e−6Dt

3D
+

(2 − 3γ)
3D

×m2m−2
1 c

− 2
3

2 exp 2
(

x1

3c2D
e−3Dt − Dt

)
− γΛ

3D
. (58)

The solutions have no initial singularity. However, at late times, the expressions are physically valid subject to

the condition 3D2 ≥ Λ.

4.2.2. Model with variable Λ and constant ξ

Let us assume that ξ (t) = ξ0 = const·tan t . Then from equations (49) and (50) together with (12), the solutions
for energy density, pressure and cosmological constant are obtained as:

ρ =
1
γ

{
3Dξ0 +

[
(x1x2 + x2x3 + x1x3) −

(
x2

2 + x2
3 + x2x3

)
c−2
2

]
e−6Dt

− 2m2m−2
1 c

− 2
3

2 exp 2
(

x1

3c2D
e−3Dt − Dt

)}
, (59)

p =
(γ − 1)

γ

{
3Dξ0 +

[
(x1x2 + x2x3 + x1x3) −

(
x2

2 + x2
3 + x2x3

)
c−2
2

]
e−6Dt

− 2m2m−2
1 c

− 2
3

2 exp 2
(

x1

3c2D
e−3Dt − Dt

)}
, (60)

Λ = 3D2 +
[
(x1x2 + x2x3 + x1x3)

(
1 − 1

γ

)
+

(
x2

2 + x2
3 + x2x3

) c−2
2

γ
− 3Dξ0

γ

]
e−6Dt

−
(

3 − 2
γ

)
m2m−2

1 c
−2

3
2 exp 2

(
x1

3c2D
e−3Dt − Dt

)}
. (61)

All the parameters start with constant values and converge to some non-zero positive constants as t → ∞ . At
late times the cosmological constant is positive.

150



KANDALKAR, KHADE, GAIKWAD

4.2.3. Model with variable Λand ξαρ

Assuming ξ = ξ0ρ , then equations (49) and (50) together with (12), we get the following solutions:

ρ =
1

(γ − 3Dξ0)
{[

(x1x2 + x2x3 + x1x3) −
(
x2

2 + x2
3 + x2x3

)
c−2
2

]
e−6Dt

− 2m2m−2
1 c

− 2
3

2 exp 2
(

x1

3c2D
e−3Dt − Dt

)}
, (62)

p =
(γ − 1)

(γ − 3Dξ0)
{[

(x1x2 + x2x3 + x1x3) −
(
x2

2 + x2
3 + x2x3

)
c−2
2

]
e−6Dt

− 2m2m−2
1 c

−2
3

2 exp 2
(

x1

3c2D
e−3Dt − Dt

)}
, (63)

ξ =
ξ0

(γ − 3Dξ0)
{[

(x1x2 + x2x3 + x1x3) −
(
x2

2 + x2
3 + x2x3

)
c−2
2

]
e−6Dt

− 2m2m−2
1 c

− 2
3

2 exp 2
(

x1

3c2D
e−3Dt − Dt

)}
, (64)

Λ = 3D2 +
[
1 − 1

(γ − 3Dξ0)

]
(x1x2 + x2x3 + x1x3) e−6Dt +

1
(γ − 3Dξ0)

×
(
x2

2 + x2
3 + x2x3

)
c−2
2 e−6Dt +

[
2

(γ − 3Dξ0)
− 3

]
m2m−2

1 c
− 2

3
2 exp 2

(
x1

3c2D
e−3Dt − Dt

)
. (65)

The parameters have constant values at t = 0. As t → ∞ρ, p, ξvanish, whereas Λ converges to 3D2 .

Physical Behaviour of the Model

It can easily be observed that the spatial volume, all three scale factors, and all other physical, kinematical
parameters are constant at t = 0, this shows that the model is free from the initial singularity. The expansion
scalar is constant throughout the evolution. This indicates that the universe starts evolving with constant volume
and expands with the exponential rate. It is interesting to note that there is a constant rate of expansion in
this model. The negative value of q indicates inflation. As t increases, the scale factors and the spatial volume
increases exponentially. While the pressure, energy density, AP and shear scalar decreases. As the cosmic time
increases, the scale factors and the volume become infinitely large whereas AP and shear scalar tends to 0. The
directional Hubble parameter and the average generalize Hubble parameter will become constant for large time.
The model indicates that the universe starts evolving with constant volume and exponentially with constant
rate of expansion and will finally approach isotropy at late time.

Anisotropy parameter starts with maximum value 1
3D2

(
x2

1 + x2
2 + x2

3

)
c−2
2 at t = 0.For n = 0, we get

q = −1. Incidentally, this value of deceleration parameter leads to dH
dt = 0 and implies the greatest value of

Hubble’s parameter and the fastest rate of expansion for the universe. It follows that the solution obtained in

this model are consistent with the recent observation of Ia Supernovae. The ratio σ2

θ2 → 0, as t → ∞ which

implies that the models approach to isotropy at late times. The model represents a shearing, non-rotating and
expanding universe.
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5. Conclusion

In this paper we have presented two categories of Bianchi type-V cosmological solutions to field equation
with viscous fluid in the presence of a cosmological constant in general relativity. The cosmological constant
offers a potentially important contribution to the dynamics of the evolution of the universe. Using the power
law for an exponential for the average scale factor derived from the variation law of Hubble’s parameter, which
gives a constant value of the deceleration parameter. In the first category of the model (i.e., for n �= 0), the
universe begins expansion from a singular state and all matter and radiation is concentrated at the big bang
epoch, the expansion driven by the big bang impulse. The rate of expansion slows down and vanishes as t → ∞ .
This gives a physically realistic model of the universe with variable Λ in the presence of bulk viscosity. On the
other hand, the model is not physically realistic in the presence of constant Λ. Thus only variable Λ is allowed
in the physically relevant viscous models. The cosmological constant is observed to have a small, positive values
at late times. The model has a point singularity at the initial epoch as the scale factors and the volume vanish
at this moment. The model represents a shearing and non-rotating and expanding universe. This approaches
isotropy for large values of t .

In the second category, n = 0, the universe has no singular state; the universe starts expanding with
constant expansion rate for the constant volume where all physical quantities are well behaved. We have also
discussed the physical and kinematical properties of the universe.

The solution obtained for the models in both the categories are consistent with the recent observation of
type Ia Supernovae. Finally, there is possibility the law of variation for Hubble’s Parameter presented in this
paper may be useful in studying new solutions of Einstein’s field equations for anisotropic Bianchi type-V space
time in other alternative theories. Thus, more realistic models may be analyzed by using this technique, which
may lead to interesting a different physical behaviour of the evolution of the universe.
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