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Abstract

The state of the Y b3+ ion of the ytterbium iron garnet (Yb3 Fe5O12) is suitable for the development of

theoretical models with rather good approximations. Using the theory of two-level paramagnetic ions, the

total and magnetic specific heat at low temperatures has been calculated. The influence of tensors g and

G on the specific heat of YbIG has been examined. A comparison has been made of our results and those

obtained with a model based on of the approximation of Weiss Molecular-Field (WMF) and experimental

data.
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1. Introduction

Rare-earth iron garnets (RIGs) are among some of the important magnetic materials and have extensive
applications in materials science and technology. They are ferrimagnets, and are used in magnetic recording
device and show giant magneto restriction at low temperatures. Similarly, the garnets have important applica-
tions in laser industry. By substituting various rare earth ions into the garnet lattice one can study the effect
of these ions on the macroscopic properties. Within rare earth iron garnets a variety of magnetic interactions,
which provide a detailed test for any proposed theoretical model [1].

The ytterbium iron garnet (Yb3 Fe5 O12) is of particular interest because (i) the lowest doublet of Y b3+

in YbIG is separated from the excited states by an energy on the order of 600 cm−1 and thus does not contribute
to the specific heat below 4 K; (ii) the interesting parts of the diagrams are confined in the low temperature

range 2–30 K, mainly due to its very low inversion (compensation) temperature TI (≈7–8 K); and (iii), the

state of the Y b3+ ion is suitable for the development of theoretical models with rather good approximations
and generally this compound can be considered as a good example for the study of different kinds of magnetic
phase [2–4].

In this paper, we are interested in the calculation of the specific heat of YbIG in the low temperatures
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range 2–40 K. The influence of the values of the g and G tensors on the specific heat of the compound in
question has been examined.

2. Theory of specific heat for YbIG

2.1. Two-level paramagnetic ions model for YbIG

The repartition of atoms of YbIG is as follow: the Fe3+ , located on a and d sites, are strongly internally
coupled (500K) and, at low temperature, effectively form a single rigid saturated sub lattice. The state of any

give Fe3+ is that of the sublattice as a whole, the back reaction of neighboring Y b3+ ions being negligible. This
justifies a Mean-field approach to the Yb-Fe interactions. The Yb ions, on six inequivalent c sites, interact
negligibly among themselves and form a non-cooperative “paramagnetic” system. The lowest Kramer’s doublet

of Y b3+ is well separated from other states and with subtle corrections its spin Hamiltonian describes the
behavior. Interactions within the ground doublet are given by exchange G and paramagnetic tensors g. The
anisotropy of YbIG has its origin in these interactions.

Per the argument above, our calculation will be a straightforward application of the theory of two-level
paramagnetic ions in a exchange field without an external magnetic field.

With consideration of the crystal field, exchange interaction and the external magnetic field, the Hamil-

tonian of the Y b3+ is written in the form [5, 6]

H = Hc + Hexch + Hext. (1)

The strongest values of crystal field product the split of energies, and the system may be reduced to the

fundamental level which can be simulated as a spin fictive S = 1
2

without a crystal field term. So, a Kramer’s

doublet in presence of a magnetic field and exchange interaction is

Hext = −μB
�Sg �H (2)

Hexch = −�SG�u (3)

Here, �u = �MFe

MFe
is a unit vector and g and G are diagonal matrices in local coordinates which satisfy the relation

G = μBMFegn (4)

where n are the coefficients of molecular field and reduces to a constant in the isotropic case. The behavior of

the ground doublet of Y b3+ on {q} site is given by the relation

(H)q = (Hexch + Hext)q = −�Sq
�Δq (5)

where
�Δq = −μBgq

�H + Gq�u (6)

is the level splitting of a site on the ith Yb sublattice (i = 1, 6). Following this expression, all thermodynamic

quantities are easily deduced. Using an approach based on a two-level system, the partition function for a {q}
site can be written

Zq = Tr
[
e−β(H)q

]
, β =

1
kBT

. (7)
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For a Kramer’s doublet of Y b3+ on a {q} site, we have

Zq = e
Δq

2kBT + e
− Δq

2kB T . (8)

Then, the free magnetic energy for the ion of Ytterbium is

F (T )q = −kBT ln (Zq) = −kBT ln

(
2 cosh

[
Δq

2kBT

])
. (9)

The total partition function for a six in equivalents sites is

Z =
6∏

q=1

Zq (10)

Thus, the total free magnetic energy of Y b3+ and Fe3+ ions in the presence of an external magnetic field is

F (T ) = −kBT
6∑

q=1

(
ln

(
2 cosh

[
Δq

2kBT

]))
− �MFe

�H (11)

From equations (6) and (11) (i) the effective fields at each of the six in equivalent Yb sites were determined via

the G and g tensors and then the Yb-ion free energies were calculated; and (ii) the principal local axes of the

g and G tensors are appropriate to the ith sublattice.

2.2. Lattice specific heat: theoretical survey

For magnetic insulators such as the garnets the Hamiltonian of the system can be written in first
approximation by [7]

H = Hlatt + Hmagn + Hnucl, (12)

where Hlatt depends only on the nuclear position and momentum coordinates, Hmagn describes the behavior

of the unpaired (magnetic) electrons, and Hnucl describes the interaction of the nuclear spins with the electron
spins. From the equation of the Hamiltonian, the total specific heat resulting is given by

C = Clatt + Cmagn + Cnucl, (13)

where Clatt , Clatt and Cnucl are the lattice, the magnetic, and the nuclear specific heat, respectively. The
problem of this equation is that the Clatt term cannot be determined directly. This limitation can be overcome
by assuming the Clatt of rare earth garnets could be taken from that of LuIG. Hence, we replace the lattice
term Clatt with the experimental values of LuIG, that is

CY bIG = C (LuIG) + Cmagn + Cnucl (14)

The nuclear term can be chosen as

Cnucl =
0.0158

T 2
. (15)
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The magnetic term can be deduced from the theory of two-level paramagnetic ions (equations (1)), by using
the well-known thermodynamic relation

Cmagn = −T 2 d2

dT 2
F (T ) . (16)

The application of the approximation of Weiss-Molecular- Field (WMF) gives

CmagnWMF
= 6R

(
Ē1

kBT

)2
e
− Ē1

kBT(
1 + Ē1

kBT

)2 , with E1 = 25cm−1. (17)

In what follows, the total and the magnetic computed specific heat, without an external magnetic field, and for
different choice of the values of tensors g and G, are shown. A comparison is made of our results with those
obtained by the WMF approximation.

3. Numerical simulation

The total and magnetic heat specific computed of YbIG for different values of g and G was obtained by
theory of two-level paramagnetic ions in an exchange field. The physical quantities used in the computation are
listed in Table 1.

Table 1. Principal values of tensors G and g used in YbIG calculations on the local axis.

Author G (cm−1) g
Wickersheim[8] 11.625.729.9 2.853.603.78
Kolmakova[9] 25.52912 3.73.33.0

Fillion[10] 31.1527.0612.25 3.753.653.1

The results of our computed specific heat are presented and discuss below. They are plotted and compared
with those obtained by Harris et al. [7].

In Figure 1 is plotted the total specific heat of YbIG by using the model of two-level paramagnetic ions
for different choice of values of g and G, together with data from the theory of WMF approximation, in the
temperature range 1.5–22 K. Results obtained by us is also depicted in the same figure for comparison. In the
region above 10 K, we see that (i) the experimental values are lower than theoretical values; (ii) the specific

heat calculated from the values of [9–10] are very close to the data of [7]; and (iii) the two-level model using

values from Kolmakova [9] is in better agreement with the experimental results than the WMF approximation.

In the region below 10 K, the WMF approximation is closer to the curve of specific heat of [8] than the model
of two-level paramagnetic ions.

In Figure 2 is show the zoom of the specific heat of YbIG at very low temperatures. Observe that, below
4 K, the specific heat becomes exceeds what one would expect on the basis of the WMF and the two-level
models.

Figure 3 shows the magnetic specific heat of YbIG computed with the two-level model and the WMF
approximation. The figure compares the experimental magnetic specific heat data extracted from the data
of [8]. The two-sites energy levels have been determined and compared with those obtained by the model of
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WMF and the experimental data. Our values, E1 and E2 , can be compared with those deduced from other
experiments (see Table 2).
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Figure 1. Total specific heat of YbIG in the range 1.5–

2.2 K.

Figure 2. Total specific heat of YbIG in the temperature

range 15–4.5 K.

In Table 2, we can see that the values of Ē predicted with our calculation based on two-level paramagnetic
ions are much approached with the value extracted with the Weiss-Mean-Field (WMF) model (see Figure 4).
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Figure 3. The magnetic specific heat of YbIG in the

temperature range 1.5–22 K.

Figure 4. The computed magnetic specific heat of YbIG

versus temperature, using the Weiss Mean Field approxi-

mation (equation 17).
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Table 2. Values of splitting of the lowest doublet of Yb+3 in YbIG.

Source E1

(
cm−1

)
E2

(
cm−1

)
Ē

(
cm−1

)
Specific heat (4–20 K) . . . . . . 25.0
Magnetization (2.2–100 K) . . . . . . 25.5
Infrared absorption (1.5 K) 23.4 26.4 24.9
Optical absorption (77 K) 22.1 25.3 23.7
Susceptibility (550–1450 K) . . . . . . 108
Our work
•Wickersheim[8] 20.58 28.49 24.53
•Kolmakova[9] 17.67 27.88 22.78
•Fillion[10] 22.03 25.32 23.67

4. Conclusions

This paper examined the influence of tensors g and G on the calculated specific heat of YbIG. These
parameters must be accurate because any deviation in the values of g and G would not give and reproduce
the compensation temperature TI of YbIG. In the region above 10 K the experimental curve lies below the
theoretical one, possibly as a result of the uncertainty in the lattice specific heat; but in the region below
4 K the specific heat becomes larger than what one would expect on the basis of the WMF and tom-level
paramagnetic models. The different choice of the values of g and G can affect the results of the total specific
heat of YbIG. Finally, from Figure 1, we can see that the TI temperature describes the reorientation of spin,
but not a transition phase.

Appendix

The values of g and G are estimated in the local axis, but the measure of the specific heat in the
laboratory is made in the global axis. For this, we used the transformation matrix (MT) from the global axis
to local axis. The matrixes are

MT (C1) =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0

0 1√
2 − 1√

2

0 1√
2

1√
2

⎞
⎟⎟⎟⎟⎟⎠

, MT (C ′
1) =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0

0 1√
2

1√
2

0 − 1√
2

1√
2

⎞
⎟⎟⎟⎟⎟⎠

, MT (C2) =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0

− 1√
2 0 1√

2

1√
2 0 1√

2

⎞
⎟⎟⎟⎟⎟⎠

MT (C ′
2) =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0

1√
2 0 1√

2

1√
2

0 − 1√
2

⎞
⎟⎟⎟⎟⎟⎠

, MT (C3) =

⎛
⎜⎜⎜⎜⎜⎝

0 0 1

1√
2 − 1√

2 0

1√
2

1√
2

0

⎞
⎟⎟⎟⎟⎟⎠

, MT (C ′
3) =

⎛
⎜⎜⎜⎜⎝

0 0 1

1√
2

1√
2 0

− 1√
2

1√
2

0

⎞
⎟⎟⎟⎟⎠ ,

where Ci and C ′
i , with i = (1, 2, 3), are the local six sublattice of Yb3+ .

56



BOUMALI, DERAR

References

[1] S. C. Parade, S. K. Rakshit and Z. Singh, J. Sol. State. Chem, 181, (2008), 101.

[2] M. Lahoubi, G. Fillion and A. Boumali, J. Alloys. Compd., 275–277, (1998), 594.

[3] W. Wang and J. M. M. M. D. Li, 321, (2009), 3307.

[4] R. Alben, Phys. Rev. B., 2, (1970), 2767.

[5] W. P. Wolf, M. Ball, M. T. Hutchings, M. J. M. Leask and A. F. G. Wyatt, J. Phys. Soc. Japan. Suppl., 17, (1959),

443.
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