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Abstract

A transformation method is presented which consist of a coordinate transformation and a functional

transformation that allow generation of exact analytic bound state solutions of the Schrodinger Green’s

function equation. The method proposed here, which involves the generation of an exact analytic solution

from solvable decemvirate power potential within the framework of Green’s functions technique, makes it

possible to generate a number of solved quantum systems for original quantum systems with multi-term

potentials. The generated quantum systems are in general energy dependent with a single normalized

eigenstate. A method has been devised to convert a subset of the generated quantum systems with energy-

dependent potentials to a single normal system with an energy-independent potential.
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1. Introduction

The exact solutions to the fundamental dynamical equation play an important role in physics. Some
approximation methods are frequently used [1–9] to arrive at an exact analytic solution (EAS); and it is

necessitated as the potential that governs a given quantum system (QS), more often than not, does not facilitate

EAS of the Green’s function (GF). For analytical accuracy within the framework of approximation, it is necessary

that an exactly solvable potential (ESP) differ as little as possible from the given potential. Recently, the
study of higher order anharmonic potentials has been much more desirable in different branches of physics and
mathematics. In the context of the GF technique, Steiner [10, 11], in the course of his work on radial path
integrals, obtained a connection between two 3-dimensional problems. His analysis involved a nonlinear space
time transformation of the radial path integral, with a path-dependent change-of-time variable. S. S. Vasan, M.
Seetharaman and K. Raghunathan [12] demonstrate a general connection between GFs for different potential,
directly from the differential equation satisfied by the GF, and they connect certain 1-D problems with 3-D
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problems. However, success in lower dimensional cases (termed potentials) has been limited, as only a few states
can be found analytically.

In this work we made use of a simple and compact mapping procedure called the Extended transformation
(ET) method [13–20], to generate a new ESP from an already-known non-relativistic EAS of QS within the
framework of the GF technique. It seems that, within the limit of anharmonic potentials, not much work has
been carried out on the decemvirate potential, except for a simpler study [21] involving a lower dimensional
scheme. In the present work we have attempted to generate the D-dimensional Schrodinger GF equation from
decemvirate power potential. Our main objective is to generate an ESP and show their hierarchal connections,
since ESPs facilitate physical explicabilities.

2. Formalism

The extended transformation method (ET) has been applied to generate new exactly solved potentials

(ESPs) from an already known ESP. Let VA (r) be an exactly solved multi-term quantum mechanical central
potential in DA dimensional space

VA (r) = a1r
2 + a2r

4 + · · · =
s∑
1

asr
2s. (1)

The radial part of Schrodinger GF equation [16] for DA dimensional Euclidean space, henceforth called A-

quantum system (A-QS) (with � = 1 = 2m), is

(
∂2

r +
DA − 1

r
∂r + EA

n − VA (r) − lA (lA + DA − 2)
r2

)
GA

(
r, r0, E

A
n , VA (r) , CA

)
=

δ (r − r0)
rDA−1
0

, (2)

where r and r0 are the dimensionless spatial coordinates, and CA is the characteristic constant of exactly
solved quantum potential in which transformation method is applied. The corresponding integral equation is

ψA (r) =
∫

GA

(
r, r0, E

A
n , VA (r) , CA

)
.
(
EA

n − VA (r)
)
.ψA (r0) .rDA−1

0 dr0 , where the GF and energy eigenvalues

EA
n are known for the given VA (r) . The completeness of the set of energy eigenfunctions allows us to have

eigenfunction expansion of GF is

GA

(
r, r0, E

A
n , VA (r) , CA

)
=

∞∑
n=0

ψ
(n)
A (r)ψ

∗(n)
A (r0)

E − EA
n − i ∈ , (3)

from which we read off the analytic form of the wave function of the solved quantum system. Applying ET [16]

to equation (2), which comprises the co-ordinate transformation r → g (r) , r0 → g (r0), followed by a functional
transformation

GB

(
r, r0, E

B
N , VB (r) , CB

)
= f−1

B (r)GA

(
g(r), g(r0), g′2EA

n , g′2VA (g(r)) , CA

)
f−1

B (r0) , (4)

the resulting equation is found to be the same form as (2), but with new potential, energy eigenvalues and

angular momentum quantum number. Consequently equation (2) of A-QS becomes

[
∂2

r +
(

d

dr
ln

f2
B (r) gDA−1 (r)

g′ (r)

)
∂r +

(
d

dr
ln fB (r)

)(
d

dr
ln

f ′
BgDA−1 (r)

g′ (r)

)
+ g′2

(
EA

n − VA (r)
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− lA (lA + DA − 2)
r2

)]
GB

(
r, r0, E

B
N , VB (r) , CB

)
= g′2f−1

B (r)
δ (g (r) − g (r0))

gDA−1
0 (r0)

f−1
B (r0) . (5)

Here, g(r) and g(r0) are the transformation functions, which are continuous and at least three times differen-

tiable function and fB (r) and fB (r0) are the r dependent modulated amplitude to be determined. CB is the

characteristic constant of the daughter QS. To mould equation (5) to the form of a Schrodinger GF equation

form in a chosen DB dimensional Euclidean space, we consider the unspecified modulation function fB (r) and
set

d

dr
ln

f2
B (r) gDA−1 (r)

g′ (r)
=

d

dr
ln rDB−1. (6)

Integrating, we get

ln
f2

B (r) gDA−1 (r)
g′ (r)

= ln rDB−1 − 2 lnN, (7)

where N is the normalization constant. This gives

fB (r) = Ng′1/2g
−
�

DA−1
2

�
(r) · r

DB−1
2 . (8)

The corresponding DB dimensional standard Schrodinger GF equation for B-QS found to be

[
∂2

r +
DB − 1

r
∂r +

1
2
{g, r} + g′2

(
EA

n − VA (g(r))
)
−

(
lA +

DA

2
− 1

)2 (
g′

g

)2

−(DA − 2)2

4

(
g′

g

)2

− DA − 1
2

DA − 3
2

(
g′

g

)2

+
DB − 1

2
DB − 3

2
1
r2

]

×GB

(
r, r0, E

B
N , VB (r) , CB

)
=

δ (r − r0)
rDB−1
0

, (9)

where {g, r} = g′′′

g′ − 3
2

(
g′′

g′

)2

denotes the Schwarz derivative symbol.

To implement ET on A-QS potential, we have to select a term of VA (g(r)) as a working potential

V W
A (g(r)) and make the following ansatz:

g′2V W
A (g(r)) = EB

N (10)

g′2
(
EA

n − VA (g(r)) + V W
A (g(r))

)
= −VB (r) (11)

and

g′2
(
lA + DA

2
− 1

)2

g2
=

(
lB + DB

2
− 1

)2

r2
(12)

Invoking the ansatz (10) to (12), equation (9) becomes

[
∂2

r +
DB − 1

r
∂r +

1
2
{g, r} + EB

N − VB (r) −
(

lB +
DB

2
− 1

)2 1
r2

− (DA − 2)2

4

(
g′

g

)2
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−DA − 1
2

DA − 3
2

(
g′

g

)2

+
DB − 1

2
DB − 3

2
1
r2

]
GB

(
r, r0, E

B
N , VB (r) , CB

)
=

δ (r − r0)
rDB−1
0

. (13)

In the case of a power law type potential, VA (r) = aArbA , the dimension of the Euclidean space to which
the transformed system gets transported, can be arbitrarily pre-assigned only when ET is performed and the

expression 1
2 {g, r}−

(
lB + DB

2 − 1
)2 1

r2 − (DA−2)2

4

(
g′

g

)2

− DA−1
2

DA−3
2

(
g′

g

)2

+ DB−1
2

DB−3
2

1
r2 , in equation (13)

is reduce to the correct form of the centrifugal barrier term, − lB (lB+DB−2)
r2 [22], in DB dimensional space. The

transformed B-QS Green’s function equation is established as[
∂2

r +
DB − 1

r
∂r + EB

N − VB (r) − lB (lB + DB − 2)
r2

]
GB

(
r, r0, E

B
N , VB (r) , CB

)
=

δ (r − r0)
rDB−1
0

(14)

In equation (10), VA (g(r)) is termed as the working potential (WP). WP can be chosen in principle in 2n − 1
different ways. In fact we can pick any number of terms of the multi-term potential, the least being a single

term and designate it as the WP. Let for simplicity ith term as WP, in which V W
A (r) = aig

bi . Ansatz (10) is

now g′2aig
bi = −EB

N , and with a simple integration yields

g (r) =

⎡
⎣±bi + 2

2

√
−EB

N

ai
r+C

⎤
⎦

2
bi+2

, (15)

where C is the integration constant. For power law g (r) , g′ (r) is also a power law function of r ; hence by

equation (11), one gets a power law VB (r). The energy eigenvalues EB
N of the B-QS is simply obtained by

putting the coefficient of the r -independent part of VB (r)—which would be a product of a function F
(
EB

N

)
and EA

n —equal to the characteristic constant C2
B of the B system. EB

N is specified in terms of the known EA
n

of the A system. However the quantum number n and N are different as lA and lB are in general different.
The relation between the angular momentum quantum numbers are obtained from equation (12) and is

4lA = (bA + 2) (2lB + DB − 2) (DA − 2) . (16)

From equations (5) and (6) the eigenfunction expansion of B-QS Green’s function is

GB

(
r, r0, E

B
N , VB (r) , CB

)
=

∞∑
n=0

f−1
B (r)ψ

(n)
A (g (r))ψ

∗(n)
A (g (r0)) f−1

B (r0)
E − EB

N − i ∈
=

∞∑
N=0

ψ
(N)
B (r)ψ

∗(N)
B (r0)

E − EB
N − i ∈

. (17)

The B-QS energy eigenfunctions ψ
(N)
B (r) can be read off from equation (17) in conjunction with equation (8)

as

ψ
(N)
B (r) = g′−1/2g

�
DA−1

2

�
(r) .r

−
�

DB−1
2

�
ψ

(n)
A (g (r)) . (18)

Equation (19) and (20) holds good for any parent and daughter QS.

3. Generation of new ESP from decemvirate power potential

We consider the decemvirate power potential as A-QS,

VA (r) = ar2 − br4 + cr6 − dr8 + er10, (19)
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to generate the new exactly solved QS. Coefficients a, b, c, d and e are the parameters of the potential. She-Hai
Dong and Zhong Qi Ma [ 21 ] had given the energy eigenfunctions as

ψA (r) = N0r
lA exp

[
1
2
α.r2 − 1

4
β.r4 +

1
6
τ.r6

]
, (20)

where the parameters of the potential, energy eigenfunctions and the angular momentum quantum number lA

are interrelated as α2 − 2β · lA − 3β = a, 5τ − 2τ · lA − 2αβ = −b, β2 + 2ατ = c , and τ2 = e .

The constraints on the parameters of the decemvirate power potential are

a =
d4 − 8ced2 + 16c2e+64de2

√
e
(
lA + 3/2

)
64e2

(21)

and

b =
8e2

√
e (5 + 2lA) − d

(
d2 − 4ce

)
8e2

. (22)

The energy eigenvalues are

EA = −α (1 + 2lA) = −
(1 + 2lA)

(
d2 − 4ce

)
8e
√

e
. (23)

Corresponding to DA = 1, the dimensional differential equation is

[
∂2

r + EA −
(
ar2 − br4 + cr6 − dr8 + er10

)
− lA (lA − 1)

r2

]
GA (r, r0, EA, VA (r) , CA) = δ (r − r0) . (24)

Here, VA (r) is a five term potential, as given in equation (19). From this multi-term potential of A-QS,

the WP can be chosen in
(
25 − 1

)
different ways. To implement ET on A-QS, as a specific choice, we select

er10 as the WP. The functional form of g(r), obtained from (15), is

g(r) = ±
(
−EB

e

)1/2

(6r)1/6
, (25)

with the local property g(0) = 0. Taking the positive sign in equation (25) and utilizing equations (11), we get
the following B-Sturmian quantum system potential:

VB (r) = α1r
−5/3 + α

(n)
2 r−4/3 − α

(n)
3 r−1 + α

(n)
4 r−2/3 − α

(n)
5 r−1/3 (26)

with α1 = 6−5/3
(
−EB

e

)1/6
(−EA) = C2

B, α
(n)
2 = −6−4/3a

(
−EB

e

)1/3
, α

(n)
3 = −6−1b

(
−EB

e

)1/2
, α

(n)
4 =

−6−2/3c
(
−EB

e

)2/3
and α

(n)
5 = −6−1/3d

(
−EB

e

)5/6
.

To make the above potential normal, we take a → an , b → bn , c → cn and d → dn of the A-QS

parameter such that they become an = 64/3α2

(
−EB

e

)−1/3
, bn = 6α3

(
−EB

e

)−1/2
, cn = 62/3α4

(
−EB

e

)−2/3
and

dn = 61/3α5

(
−EB

e

)−5/6
. Consequently, the normal form of VB (r) is given by

VB (r) = α1r
−5/3 + α2r

−4/3 − α3r
−1 + α4r

−2/3 − α5r
−1/3. (27)
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The energy eigenvalues of B-QS is

EB = −
[

α5 (6lB + 3DB − 5)2 (6lB + 3DB − 4)
3 {9α1 − 2α2 (6lB + 3DB − 5)}

]
. (28)

The angular momentum quantum number lB of B-QS is related to the angular momentum quantum number

lA of A-QS through equation (16) and is lA = 6lB + 3DB − 11
2 .

The parameters of the potential energy eigenvalues and angular momentum quantum number of B-QS
are connected by constraint equations as

α3 −
α1

(6lB + 3DB − 5) (6lB + 3DB − 4)

{
81

α2
2

(6lB + 3DB − 5)2
− 18α2

}

+(6lB + DB − 1)
√

EB = 0 (29)

α4 −
[

1
(6lB + 3DB − 4)

{
27
2

α2
1

(6lB + 3DB − 5)2
− α2

}]2

− 6α1

(6lB + 3DB − 5)

√
−EB = 0 (30)

α5 −
1

(6lB + 3DB − 4)

{
27

α2
1

(6lB + 3DB − 5)2
− 6α2

} √
−EB = 0. (31)

Invoking equations (27) and (28) in equation (14), we get the standard Schrodinger GF equation in DB

dimensional Euclidean space as

[
∂2

r +
DB − 1

r
∂r + EB

N −
(
α1r

−5/3 + α2r
−4/3 − α3r

−1 + α4r
−2/3 − α5r

−1/3
)

− lB (lB + DB − 2)
r2

]
GB

(
r, r0, E

B
N , VB (r) , CB

)
=

δ (r − r0)
rDB−1
0

. (32)

From equation (17), the new radial eigenfunction is read off as

ψB (r) = NBrlB exp
[

9α1r
1/3

(6lB + 3DB − 5)
−

−9
2

1
(6lB + 3DB − 4)

{
9
2

α2
1

(6lB + 3DB − 5)2
− α2

}
r2/3 +

√
−EBr

]
, (33)

where we have selected er10 as the WP. The functional form of g(r) obtained from (15) is

g(r) = ±
(
−EB

e

)1/2

(6r)1/6
, (25)

with the local property g(0) = 0. Taking the positive sign in equation (25) and utilizing the equations (11), we
get the following potential of B-Sturmian quantum system:

VB (r) = α1r
−5/3 + α

(n)
2 r−4/3 − α

(n)
3 r−1 + α

(n)
4 r−2/3 − α

(n)
5 r−1/3 (26)
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with α1 = 6−5/3
(
−EB

e

)1/6
(−EA) = C2

B, α
(n)
2 = −6−4/3a

(
−EB

e

)1/3
, α

(n)
3 = −6−1b

(
−EB

e

)1/2
, α

(n)
4 =

−6−2/3c
(
−EB

e

)2/3
and α

(n)
5 = −6−1/3d

(
−EB

e

)5/6
.

The potential (26) is a Sturmian. To make it normal, we take a → an , b → bn , c → cn and d → dn

of the A-QS parameter such that an = 64/3α2

(
−EB

e

)−1/3
, bn = 6α3

(
−EB

e

)−1/2
, cn = 62/3α4

(
−EB

e

)−2/3
and

dn = 61/3α5

(
−EB

e

)−5/6
. Consequently the normal form of VB (r) is given by

VB (r) = α1r
−5/3 + α2r

−4/3 − α3r
−1 + α4r

−2/3 − α5r
−1/3. (27)

The energy eigenvalues of B-QS is

EB = −
[

α5 (6lB + 3DB − 5)2 (6lB + 3DB − 4)
3 {9α1 − 2α2 (6lB + 3DB − 5)}

]
. (28)

The angular momentum quantum number lB of B-QS is related to the angular momentum quantum number

lA of A-QS through equation (24) and is lA = 6lB + 3DB − 11
2

.

The parameters of the potential energy eigenvalues and angular momentum quantum number of B-QS
are connected by some constraint equations as

α3 −
α1

(6lB + 3DB − 5) (6lB + 3DB − 4)

{
81

α2
2

(6lB + 3DB − 5)2
− 18α2

}

+(6lB + DB − 1)
√

EB = 0, (29)

α4 −
[

1
(6lB + 3DB − 4)

{
27
2

α2
1

(6lB + 3DB − 5)2
− α2

}]2

− 6α1

(6lB + 3DB − 5)

√
−EB = 0, (30)

α5 −
1

(6lB + 3DB − 4)

{
27

α2
1

(6lB + 3DB − 5)2
− 6α2

} √
−EB = 0. (31)

Invoking the equations (27) and (28) in equation (14) we get the standard Schrodinger GF equation in DB

dimensional Euclidean space as

[
∂2

r +
DB − 1

r
∂r + EB

N −
(
α1r

−5/3 + α2r
−4/3 − α3r

−1 + α4r
−2/3 − α5r

−1/3
)

− lB (lB + DB − 2)
r2

]
GB

(
r, r0, E

B
N , VB (r) , CB

)
=

δ (r − r0)
rDB−1
0

. (32)

From equation (17), the new radial eigenfunction can be read off as

ψB (r) = NBrlB exp
[

9α1r
1/3

(6lB + 3DB − 5)
−

−9
2

1
(6lB + 3DB − 4)

{
9
2

α2
1

(6lB + 3DB − 5)2
− α2

}
r2/3 +

√
−EBr

]
. (33)
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In the similar procedure we have find the EASs, taking −dg8 ,cg6 , −bg4 and ag2 as WP from equation (17)
Tables 1 and 2.

Table 1. List of ESP, EB and constraint equation generated from decemvirate power potential VA (r) = ar2 − br4 +

cr6 − dr8 + er10 taking the WPs: −dg8 ,cg6 , −bg4 and ag2 .

( )( )rV W
A

( )rVB BE Constraint equation 

8dg−

5
4

3
5
6

2
5
8

1

−
−

−
−

−
rrr βββ

5

2

5
5
2

4 rr ββ +
−

+

( )
⎩
⎨
⎧−+

52
5

1

1

85.10
ββ

β

B
D

B
l

( )}45105 −++ BB Dlβ

(                   )45.10
)4510(

1252 −++
−+

−
B

D
B
l

B
D

B
l

β
β

0
5

6
245.10

3

5

1

3

10

1
=−+⎟

⎠
⎞

⎜
⎝
⎛

−++ ⎟
⎠
⎞⎜

⎝
⎛

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

B
D

B
l

B
D

B
l

β

β

β

β

( )
0

58510

110

2

4510
2

1

1

3

10

1
8510

4

=
−+

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎟
⎠
⎞

⎜
⎝
⎛

−++⎟
⎠
⎞

⎜
⎝
⎛

−+

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

β
β

β

β
β

BDBl

B
D

B
l

B
D

B
l

6cg

2

1

3
1

2
2

3

1

−−−
−+ rrr γγγ

2
5

2/1
4 rr γγ +−

⎢
⎢
⎣

⎡

−+
+−

24

4

4

1 51

5

2
4

BB Dl

γγ

γ
γ

(                   )12
2324

2

5

4

2

1
2 −++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

−+
− BB

BB

Dl
Dl γ

γγ
γ

0
2

3
2

5
5

4
324

1
2

3
=−+−

−+
− ⎟

⎠
⎞

⎜
⎝
⎛

B
D

B
l

B
D

B
l

γ
γ

γγ
γ

4bg−

3

2

3
3

2

2
3

4

1 rrr σσσ ++
−−

2
5

3

4

4 rr σσ +−

( )⎢
⎢
⎣

⎡

−+
−

5

41

436 σ

σσ

BB Dl

( )]
BB

Dl ++ 2
5

σ

( )
(                              )0136

6436

9

5

4
2

2
1

2 =−+−+
−+

− BB
BB

Dl
Dl σ

σσ
σ

0
436

6

4

1 51

5

2
4

3 =
−+

−−
BB Dl

σσ

σ
σ

σ

2ag

2
.32

1
1

rrr ρρρ +−−

4
3

3
1

rr ρρ +−

( )BB Dl +2
2 5

4

ρ

ρ

2

2
1

)12( −+
−

BB
Dl

ρ

( ) 012
)12( 5

5

41
2

=+++
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ρ
ρ

ρρ
ρ

0
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4
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2
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3
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ρ
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where

β1 = 5−8/5

(
EB

d

)1/5

(−EA) , β2 = 5−6/5a

(
EB

d

)2/5

, β3 = 5−4/5b

(
EB

d

)3/5

,

β4 = 5−2/5c

(
EB

d

)4/5

, β5 = 52/5e

(
EB

d

)6/5
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γ1 =
1
8

(
−EB

c

)1/4

(−EA) , γ2 =
1
2
a

(
−EB

c

)1/2

, γ3 =
1
2
b

(
−EB

c

)3/4

,

γ4 = 2d

(
−EB

c

)5/4

, γ5 = 4e

(
−EB

d

)3/2

σ1 = 3−4/3

(
EB

b

)1/3

(−EA) , σ2 = 3−2/3a

(
EB

b

)2/3

, σ3 = 32/3c

(
EB

b

)4/3

,

σ4 = 34/3d

(
EB

b

)5/3

, σ5 = 9e

(
EB

b

)2

and

ρ1 =
1
2

(
−EB

a

)1/2

(−EA) , ρ2 = 2b

(
−EB

a

)3/2

, ρ3 = 4c

(
−EB

a

)2

,

ρ4 = 8d

(
−EB

a

)5/2

, ρ5 = 16e

(
−EB

a

)3

.

Table 2. List of B-QS transformation functions g (r) and wave functions ψB (r) generated from decemvirate power

potential, taking the WP as given in the Table 1.

Sl No                      ( )rg                                          ( )rBψ

  1 
       

( ) 5/1
10/1
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⎠

⎞
⎜
⎝

⎛
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25
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⎥
⎦
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⎢
⎣

⎡
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5
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( ) 3/1
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b

EB ⎟
⎠

⎞
⎜
⎝

⎛
± ( ) ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
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−+
2

5
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2
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1

2

1

8

3
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2r
a
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⎞
⎜
⎝

⎛
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⎥
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⎢
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⎡
+−
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3

5
2

5
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1
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4. Conclusions

We have generated a new class of exactly solved quantum systems in non-relativistic Schrodinger GF
equation, using the extended transformation method in any arbitrary number of spatialD -dimensional Eu-

clidean spaces from decemvirate power law anharmonic potentialVA (r) = ar2 − br4 + cr6 − dr8 + er10 , taking

the working potentialseg10,−dg8 , cg6 , −bg4 and ag2. The solutions consist of eigenfunction and the cor-
responding eigenvalues, which were obtained in a closed form. There is a distinct interrelation between the
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parameters of the potentials and the orbital momentum quantum number l . For quantum multi-term poten-
tials it is possible to generate a finite number of different exactly solved quantum systems by selecting working
potential, as mentioned earlier. We however restrict ourselves to taking one term WP. Two or multi-term WP
as they offer the following practical difficulties: the indefinite integral specifying the transformation function
g (r)cannot be evaluated analytically in most of the cases and even if such integrals are found they are of the

form F (g (r)) = r + C and the analytical inverse function F−1 (g (r)) cannot be found.

This paper is an endeavor to find/construct/generate five new potentials which are exactly solvable. They
may find application in various branches of science, such as physics, chemistry, biology, electronics etc. Four of
the exactly solvable potentials generated are tabulated with associated properties. Even to find approximate
solution of Schrodinger equation for a particular problem, these exactly solved quantum potentials may facilitate
efficient approximate calculation when the potential happens to be “near” one of the exactly solved potential.
Lower arbitrary dimensional potentials might help analysis and design of semi-conductor hetero-structures of
nano-technology.
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