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Abstract

Within the framework of the dielectric continuum model and Loudon’s uniaxial crystal model, the full

polar optical phonon modes including the quasi-confined (QC) modes, the propagating (PR) modes, the

half-space (HS) modes, and the interface optical (IO) modes in a quasi-one-dimensional (Q1D) wurtzite

rectangular quantum wire (QWR) structure are deduced and analyzed. The analytical phonon states, their

dispersion equations and polar polarization eigenvectors are derived. Numerical calculation of dispersive

spectra for these modes is performed on a wurtzite GaN/AlN rectangular QWR. The behavior of the QC

mode reducing to the IO mode is observed clearly in the dispersive curves of these modes, which reveals that

the present theories of phonon modes are self-consistency and correct for the description of phonon modes

in wurtzite Q1D rectangular NW. These observations and results reveal that the confined dimensionality

and cross-section shape influence greatly the dispersive properties of phonon modes in wurtzite quantum

confined systems.
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1. Introduction

Currently, group III GaN-based semiconductor (including GaN, AlN, InN and their ternary compounds)

quantum wires (QWRs) have attracted considerable amount of attention both in theoretical and experimental

investigations [1–5]. The enormous deriving force behind these research efforts is mainly due to the three evident
facts: the excellent properties of nitride materials, i.e. wide direct-band gap, large breakdown field, high carrier
mobility and high thermal stability make the materials ideally suited for short-wavelength optoelectronic devices
such as light emitting diodes and laser diodes, as well as for high-power and high-temperature electronics [6–

9]; quasi-1-dimensional (Q1D) structure confinement of QWRs for carriers in two dimensions and freedom in
the last dimension, promises more efficient lasers and optical gain as well as possible applications for optical
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waveguide and photovoltaic elements in comparisons with quantum wells (QWs) and quantum dots (QDs) [10];
the Q1D QWR systems also play an important role in testing and understanding fundamental concepts, such as
the role of dimensionality and size in optical, electrical and mechanical properties [4]. Hence the exploratory and
research of electronic and optoelectronic properties in GaN-based QWRs has become a subject of interest for
their concomitant advantages of possessing both excellent optoelectronic properties and nanoscale dimensions
since the first GaN QWR was successfully synthesized [5].

Among the various investigations of physical properties in Q1D GaN based QWR structures, the dynamic
features of crystal-lattice vibration have invoked researchers’ special interest because of the importance of the
crystal-lattice vibration for the design and work of quantum components and devices [11–13]. Quantum of
crystal-lattice vibration, also known as the phonon, is one type of important elementary excitation in solid. In
polar crystals, the polar optical phonons influence greatly not only the transport of carriers, but also the optic
and optoelectronic properties, such as electron-phonon scattering, hot-electron relaxation, interband transition,
and exciton lifetime, among other properties [14–18]. However, to the best of our knowledge, the polar optical
phonon modes and dispersive spectra as well as corresponding electron-phonon interactions in Q1D GaN-based
QWR structures have not been fully studied and understood [11, 12].

In general, the physical properties in the domain of nano-materials are expected to have close correlation
with the cross section as well as their size and morphology [19, 20]. To understand how these factors influence
their properties and to explore materials with potential applications, it is technically important to fabricate
nano-materials with controllable geometries and analyze their various features in theories [21]. Based on the

advanced MBE and MOCVD techniques, the Q1D GaN-based QWRs with cylindrical [10], hexagonal pyramid

[22, 23], triangle [24, 25] and rectangular [26] cross-sections are fabricated in experiments, which depends on
the growth-condition and material nature. Both theories and experiments reveal that, not only the electronic
and optical properties, but also the crystal-lattice dynamics and dispersive spectra are affected greatly by the
shape and size of cross-sections [27–29]. Though some phonon modes and their corresponding electron-phonon

interactions in GaN cylindrical QWRs have been studied [11, 12, 30], the full polar optical phonon modes and
their dispersive spectra in Q1D GaN-based QWRs with rectangular cross-section have not been investigated
and fully understood. Hence it is necessary and important to investigate the crystal-lattice dynamic in wurtzite
GaN-based rectangular QWR structures.

It is well known that nitrides usually crystallize in hexagonal wurtzite structure, whose physical properties
exhibit anisotropy in space. Due to the decrease of the dimensionality (in contrast to 3-dimensionality bulk

materials and the Q2D QWs), the properties of phonon modes in Q1D wurtzite QWRs may reveal many distinct

new features. In fact, based on the dielectric continuum model (DCM), the polar vibrating properties of Q1D

QWRs have been widely reported [27, 31–34]. For example, Stroscio [31] investigated the polar longitudinal-

optical phonon modes in a Q1D rectangular quantum wire. After the work, the author and coworkers [32]
also studied the surface optical phonon modes in a freestanding rectangular quantum wire. Later, Kim et al.
[33] extended the work of surface phonon modes in freestanding Q1D GaAs quantum wires to that in Q1D

GaAs/AlAs quantum wires. For cylindrical quantum wires, Xie et al. [27] have studied the surface optical (SO)

and interface optical (IO) phonon modes in cylindrical quantum wires with infinite and finite potential boundary

conditions (BCs). Zhang and Xie [34] solved the electrostatic potentials of IO modes in a multi-layer coupling

cylindrical quantum wire by using transfer matrix method. All of the aforementioned works [27, 31–34] dealt
with the optical phonon modes in cubic Q1D quantum systems. Within the framework of DCM and Loudon’s
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uniaxial crystal model [35], these works have been successfully extended from cubic quantum confined systems

to wurtzite quantum wells [36, 37, 38] and wires [11]. For instance, Shi [36] solved exactly the equation of
motion for the p-polarization field in an arbitrary wurtzite coupling QWs by employing the transfer matrix
method. Lee et al. [37] studied the confined optical phonon modes and their scattering in wurtzite crystals and
single and double planar heterostructures.

More recently, we investigated the IO phonon modes in a wurtzite GaN-AlN Q1D QWR with cylindrical
crossing-section [11]. Apart from the common IO/SO phonon modes, the half-space (HS) mode and the confined

phonon mode, some new phonon modes including the quasi-confined (QC) mode and the propagating (PR) mode
are confirmed in the Q1D wurtzite nitride QWR heterostructures. Furthermore, part of these phonon modes
(i.e. IO phonon modes) in Q2D wurtzite InN thin films and Q1D wurtzite GaN QWRs/nanorods have been

observed and identified in the recent Raman scattering experiments [39] and time-resolved second-harmonic

generation experiment [40].

Motivated by the phonon mode works of cubic Q1D QWR structure with rectangular cross-section
mentioned above [31, 32, 33], we investigate the full polar optical phonon modes (including the IO, HS, QC and

PR modes) in wurtzite rectangular quantum wires. Our motivation in part follows from two important facts:

that geometric structures of the Q1D QWRs can greatly influence the optical phonon modes [28, 29], and that

the anisotropy of wurtzite materials may result in more complicated optical phonon properties [11, 30, 36–38].

Up to now, aside from partial work into IO phonon modes [41], no investigation has fully studied polar optical
phonon modes in Q1D wurtzite rectangular quantum wire systems. The intent of the present work is to fill a
gap in optical phonon mode theories with respect to wurtzite rectangular QWRs. We study the fully phonon
vibration modes and their dispersive spectra in a Q1D rectangular QWR structures in the present paper.

The paper is so organized: in Section 2, the polar phonon dispersion relations and electron-phonon
coupling functions for the four types phonon modes, i.e. the QC, PR, HS and IO modes are deduced; in Section
3, the numerical results for the dispersion behavior of these modes in a chosen GaN/AlN QWR are carried out
and discussed, and finally, the main results obtained in the current work are summarized in Section 4.

2. Theory

Let us consider a wurtzite GaN QWR with rectangular crossing-section embedded in GaAlN dielectric
matrix (referring to Figure 1). We assume that the c-axis of the crystal is along the z -direction, and the
widths of the QWR in x -and y -directions are 2Lx and 2Ly , respectively. Within the macroscopic DCM, the

vibration properties of a given Q1D QWR structure with free charge density ρ(r) = 0 are determined from the

second-order differential equation [11, 12, 36]:

−εt(ω)∇2
t Φ(⇀

r ) − εz(ω)∇2
zΦ(⇀

r ) = 0 (1)

where Φ(⇀
r ) is the scalar electrostatic potential of phonon modes, and εt(ω) and εz(ω) are the dielectric

constants of the respective materials in t and zdirections. The dielectric functions in two different directions
are given by

εv(ω) = ε∞v
ω2 − ω2

v,L

ω2 − ω2
v,T

, (2)

400



ZHANG

where v = {t, z} denotes t- and z -directions, ε∞v is the high-frequency dielectric constant, and ωz,L , ωz,T ,

ωt,L and ωt,T are the zone center characteristic frequencies of A1 (LO), A1 (TO), E1 (LO), and E1 (TO) modes,
respectively.

o

x

y

z

2Lx

2Ly

(c -axis)

∈

∈

2 (w )

1 (w )

Figure 1. Schematic view of the wurtzite GaN/AlGaN rectangular QWR. The z -direction is taken along the c -axis of

the wurtzite crystal materials.

Since this system is translationally invariant in the z -direction the electrostatic potential describing the
optical-phonon modes may be taken as [31–33]

Φ(⇀
r ) =

∑
kz

ϕ(x, y)eikzz, (3)

where kz is the phonon wave-number in the z -direction. Finally, we get the equation in the right angle axes,
i.e. [

εt(ω)
(

∂2

∂x2
+

∂2

∂y2

)
− εz(ω)k2

z

]
ϕ(x, y) = 0, (4)

Assuming the x - and y - dependent potentials are separable and requiring that εt(ω) �= 0 for dispersive phonon
modes, it follows that

1
ϕx(x)

d2ϕx(x)
dx2

+
1

ϕy(y)
d2ϕy(y)

dy2
− ξi(ω)γ2

i (ω)k2
z = 0, (5)

or
α2

i + β2
i − ξi(ω)γ2

i (ω)k2
z = 0 (i = 1, 2), (6)

with {
ξi(ω) = sign[εzi(ω)εti(ω)]

γi(ω) =
√

|εzi(ω)/εti(ω)|.
(7)

The subscripts i= 1 ,2 in equations (5)–(7) denote the GaN well and AlGaN barrier materials, respectively.

2.1. QC phonon modes

Due to the anisotropy of the wurtzite material the QC phonon modes may appear in the Q1D GaN/AlGaN

QWRs which cannot exist in isotopic cubic GaAs-based quantum structures in general [36–38]. The QC phonon
mode is one type of mode that behaves as vibrating waves in the well-layer material and as decaying waves
in the barrier-layer dielectric material, whose characteristic is quite analogous to the bound electric states in
finite-deep quantum confined systems [30]. In terms of this feature, equation (4) confirms that the function

ξ1(ω) should take negative values, and ξ2(ω) should be positive values.
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Let us analyze the phonon potentials of the QC modes in x -direction. The potential functions of QC
modes in the QWRs are given by

ϕS
QC(x) =

{
C exp(−α2|x|) |x| > Lx,

C cos(α1x) exp(−α2Lx)/ cos(α1Lx) |x| ≤ Lx

(8)

and

ϕA
QC(x) =

⎧⎨
⎩

C sign(x) exp(−α2|x|) |x| > Lx,

C sin(α1x) exp(−α2Lx)/ sin(α1Lx) |x| ≤ Lx.
(9)

Equations (8) and (9) correspond, respectively, to the symmetrical and antisymmetrical potential functions of
QC modes in the QWR systems. The continuity of potential functions at x = ±Lx result in the relation⎧⎨

⎩
εt1(ω)α1 tan(α1Lx) − εt2(ω)α2 = 0 (S),

εt1(ω)α1 cot(α1Lx) − εt2(ω)α2 = 0 (AS).
(10)

In the same way, by substituting α and Lx in equations (9) with β and Ly , respectively, one obtains the

y -component of phonon potential functions for QC modes in the structures. Using the continuous conditions
at the interfaces y = ±Ly , the following relationships are obtained:⎧⎨

⎩
εt1(ω)β1 tan(β1Lx) − εt2(ω)β2 = 0 (S),

εt1(ω)β1 cot(β1Lx) − εt2(ω)β2 = 0 (AS).
(11)

In fact, relationships (10) and (11) are just the dispersive equations of QC modes in rectangular wurtzite QWRs.

For solutions of ϕQC(x) and φQC(y), where both are both either symmetric or antisymmetric [32, 33],
it follows that

αiLx = βiLy, i = 1, 2. (12)

Thus equations (6) and (12) require that

αi =
γikz√

1 + (Lx/Ly)2
, βi =

γikz√
1 + (Ly/Lx)2

, i = 1, 2. (13)

As discussed in references [31–33], where ϕQC(x) and ϕQC(y) have opposite parities, there will be no solutions

satisfying simultaneously dispersion equations (10) and (11). Thus only the solutions where ϕQC(x) and ϕQC(y)
have the same parities are permitted in Q1D QWR structures. The polarization eigenvectors for the symmetric
and antisymmetric QC modes are given as follows:

P SS
QC,kz

(⇀
r ) = 1−ε

4π ∇ΦSS
QC(⇀

r ) = 1−ε
4π ∇

[
ΦS

QC(x)ΦS
QC (y)eikzz

]

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C2 exp(−α2Lx−β2Ly+ikzz)
4π cos(α1Lx) cos(β1Ly)

[−x̂α1(1 − εt1) sin(α1x)

× cos(β1y) − ŷβ1(1 − εt1) sin(β1y) cos(α1x)

+ikz(1 − εz1) cos(α1x) cos(β1y)ẑ],

In

C2 exp(−β2|y|−α2|x|+ikzz)
4π [−α2(1 − εt2)x̂

−β2(1 − εt2)ŷ + ikz(1 − εz1)ẑ]
Out

(14)
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and

P AA
QC,kz

(⇀
r ) = 1−ε

4π
∇ΦAA

QC(⇀
r ) = 1−ε

4π
∇

[
ΦA

QC(x)ΦAS
QC(y)eikzz

]

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C2 exp(−α2Lx−β2Ly+ikzz)
4π sin(α1Lx) sin(β1Ly) [x̂α1(1 − εt1) cos(α1x)

× sin(β1y) + ŷβ1(1 − εt1) cos(β1y) sin(α1x)

+ikz(1 − εz1) sin(α1x) sin(β1y)ẑ],

In

C2 exp(−β2|y|−α2|x|+ikzz)
4π [−α2(1 − εt2)x̂

−β2(1 − εt2)ŷ + ikz(1 − εz1)ẑ].
Out

(15)

The labels “In” and “Out” denote those terms that are within and outside of the QWR ranges, respectively.

2.2. PR phonon modes

In isotropic cubic semiconductor materials such as GaAs-based quantum structures, there are no PR
modes. The typical feature of PR modes is that they behave as vibrating waves in both well- and barrier-
materials [42]. Based on this feature, the potential functions φ(x, y) should take the forms of vibrating waves.

In terms of theories of second-order differential equation, this demands that the conditions ξi(ω) < 0 (i =1,

2) [i.e., equation (7)] are satisfied. Taking into account the symmetry of the QWR structures, we obtained a
symmetric solution of the form in x -direction for the PR modes as

ϕS
PR(x) =

⎧⎨
⎩

C cos(α2|x|) |x| > Lx

C cos(α1x) cos(α2Lx)/ cos(α1Lx) |x| ≤ Lx,
(16)

and an antisymmetrical one as

ϕA
PR(x) =

⎧⎨
⎩

C sin(α2|x|) |x| > Lx,

C sin(α1x) sin(α2Lx)/ sin(α1Lx) |x| ≤ Lx.
(17)

By further requiring that the x -components of electric displacement at the quantum wire boundaries, it is
necessary that ⎧⎨

⎩
εt1(ω)α1 tan(α1Lx) − εt2(ω)α2 tan(α2Lx) = 0 (S),

εt1(ω)α1 cot(α1Lx) − εt2(ω)α2 cot(α1Lx) = 0 (AS).
(18)

Similar analysis finds that ϕPR(y) should satisfy equations in the form of equations (16) and (17) where α , Lx

and x are replaced by β , Ly and y , respectively. The continuity of y -components of electric displacement for
the PR modes at the quantum wire boundaries hence implies

⎧⎨
⎩

εt1(ω)β1 tan(β1Ly) − εt2(ω)β2 tan(β2Ly) = 0 (S),

εt1(ω)β1 cot(β1Ly) − εt2(ω)β2 cot(β1Ly) = 0 (AS).
(19)

403



ZHANG

The polarization eigenvectors for the symmetric and antisymmetric modes may be obtained by using the relations

P (⇀
r ) = (1 − ε)∇Φ(⇀

r )/4π on equations (16) and (17). They are given by the relations

P SS
PR,kz

(⇀
r ) = 1−ε

4π ∇ΦSS
PR(⇀

r ) = 1−ε
4π ∇

[
ΦS

PR(x)ΦS
PR(y)eikzz

]

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C2 cos(α2Lx) cos(β2Ly) exp(ikzz)
4π cos(α1Lx) cos(β1Ly) [−x̂α1(1 − εt1) sin(α1x)

× cos(β1y) − β1(1 − εt1) sin(β1y) cos(α1x)ŷ

+ikz(1 − εz1) cos(α1x) cos(β1y)ẑ],

In

C2 exp(ikzz)
4π [−α2(1 − εt2) sin(α2x) cos(β2y)x̂

−β2(1 − εt2) sin(β2y) cos(α2x)ŷ

+ikz(1 − εz2) cos(β2y) cos(α2x)ẑ],

Out

(20)

and
P AA

PR,kz
(⇀
r ) = 1−ε

4π
∇ΦAA

PR(⇀
r ) = 1−ε

4π
∇

[
ΦA

PR(x)ΦA
PR(y)eikzz

]

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C2 sin(α2Lx) sin(β2Ly) exp(ikzz)
4π sin(α1Lx) sin(β1Ly) [x̂α1(1 − εt1) cos(α1x)

× sin(β1y) − β1(1 − εt1) cos(β1y) sin(α1x)ŷ

+ikz(1 − εz1) sin(α1x) sin(β1y)ẑ],

In

C2 exp(ikzz)
4π [−α2(1 − εt2) cos(α2x) sin(β2y)x̂

+β2(1 − εt2) cos(β2y) sin(α2x)ŷ

+ikz(1 − εz2) sin(β2y) sin(α2x)ẑ].

Out

.
(21)

2.3. HS phonon modes

The HS phonon modes appear not only in cubic semiconductor quantum systems [43], but also in wurtzite
quantum structures. The HS modes behave as decaying waves in well-layer materials, and as vibrating waves
in barrier-layer materials, which is just opposite to the cases of the QC modes. Based on the characteristic, the
functions ξ1 (ω ) should be positive within the wurtzite QWR range, while ξ2 (ω ) should be negative outside

the QWR range (i.e., a dielectric environment). Thus the phonon potentials of the wurtzite rectangular QWRs
in x -direction are written as

ϕS
HS(x) =

⎧⎨
⎩

C cos(α2x) |x| > Lx,

C cosh(α1x) cos(α2Lx)/ cosh(α1Lx) |x| ≤ Lx
(22)

for the symmetrical HS phonon modes and

ϕA
HS(x) =

⎧⎨
⎩

C sin(α2x) |x| > Lx,

C sinh(α1x) sin(α2Lx)/ sinh(α1Lx) |x| ≤ Lx
(23)

for the antisymmetrical HS modes. Similarly, the HS phonon potentials in the y -direction can also be written
by substituting α and Lx with β and Ly . Adding the continues condition at the rectangular QWR interfaces,
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one gets ⎧⎨
⎩

εt1(ω)α1 tanh(α1Lx) + εt2(ω)α2 tan(α2Lx) = 0 (S),

εt1(ω)α1 coth(α1Lx) − εt2(ω)α2 cot(α1Lx) = 0 (AS),
(24)

and ⎧⎨
⎩

εt1(ω)β1 tanh(β1Ly) + εt2(ω)β2 tan(β2Ly) = 0 (S),

εt1(ω)β1 coth(β1Ly) − εt2(ω)β2 cot(β1Ly) = 0 (AS),
(25)

The polarization eigenvectors of HS modes in the wurtzite QWRs are given by

P SS
HS,kz

(⇀
r ) = 1−ε

4π ∇ΦSS
HS(⇀

r ) = 1−ε
4π ∇

[
ΦS

HS(x)ΦS
HS(y)eikzz

]

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C2 cos(α2Lx) cos(β2Ly) exp(ikzz)
4π cosh(α1Lx) cosh(β1Ly) [x̂α1(1 − εt1) sinh(α1x)

× cosh(β1y) + β1(1 − εt1) sinh(β1y) cosh(α1x)ŷ

+ikz(1 − εz1) cosh(α1x) cosh(β1y)ẑ],

In

C2 exp(ikzz)
4π [−α2(1 − εt2) sin(α2x) cos(β2y)x̂

−β2(1 − εt2) sin(β2y) cos(α2x)ŷ

+ikz(1 − εz2) cos(β2y) cos(α2x)ẑ]

Out

(26)

for symmetrical HS phonon modes, and

P AA
HS,kz

(⇀
r ) = 1−ε

4π ∇ΦSS
HS(⇀

r ) = 1−ε
4π ∇

[
ΦA

HS(x)ΦA
HS(y)eikzz

]

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C2 sin(α2Lx) sin(β2Ly) exp(ikzz)
4π sinh(α1Lx) sinh(β1Ly)

[x̂α1(1 − εt1) cosh(α1x)

× sinh(β1y) + β1(1 − εt1) cosh(β1y) sinh(α1x)ŷ

+ikz(1 − εz1) sinh(α1x) sinh(β1y)ẑ],

In

C2 exp(ikzz)
4π [α2(1 − εt2) cos(α2x) sin(β2y)x̂

+β2(1 − εt2) cos(β2y) sin(α2x)ŷ

+ikz(1 − εz2) sin(β2y) sin(α2x)ẑ]

Out

(27)

for the antisymmetrical HS phonon modes.

2.4. IO phonon modes

The IO phonon mode is one modes whose electrostatic potential maximizes at the interfaces, and then
decays on both sides of each interface. The IO phonon modes behave as decaying waves in all of the material
layers. These features demand that the functions ξi (ω ) (i =1, 2) take positive in the well and barrier materials.
Thus IO phonon modes can exist in isotropic cubic semiconductor nanowires or in anisotropic wurtzite QWRs.
We obtained a symmetric solution of the form in x -direction for the IO modes [41] in the form

ϕS
IO(x) =

⎧⎨
⎩

C exp(−α2|x|) |x| > Lx,

C cosh(α1x) exp(−α2Lx)/ cosh(α1Lx) |x| ≤ Lx.
(28)
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An antisymmetric solution is

ϕA
IO(x) =

⎧⎨
⎩

C sign(x) exp(−α2|x|) |x| > Lx,

C sinh(α1x) exp(−α2Lx)/ sinh(α1Lx) |x| ≤ Lx.
(29)

The continuity of electric displacement in x -direction at the quantum wire boundaries implies
⎧⎨
⎩

εt1(ω)α1 tanh(α1Lx) + εt2(ω)α2 = 0 (S),

εt1(ω)α1 coth(α1Lx) + εt2(ω) = 0 (AS).
(30)

The potential functions of IO phonon modes in the y -direction can be given similarly. Using these results

with P (⇀
r ) = (1 − ε)∇Φ(⇀

r )/4π , the polarization eigenvectors for the symmetric IO modes P SS
kz

(⇀
r ) and the

antisymmetric IO modes P AA
kz

(⇀
r ) are obtained, i.e.,

P SS
IO,kz

(⇀
r ) = 1−ε

4π ∇ΦSS
IO(⇀

r ) = 1−ε
4π ∇

[
ΦS

IO(x)ΦS
IO(y)eikzz

]

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C2 exp(−α2Lx−β2Ly+ikzz)
4π cosh(α1Lx) cosh(β1Ly)

[x̂α1(1 − εt1) sinh(α1x)

× cosh(β1y) + β1(1 − εt1) sinh(β1y) cosh(α1x)ŷ

+ikz(1 − εz1) cosh(α1x) cosh(β1y)ẑ],

In

C2 exp(−α2|x|−β2|y|+ikzz)
4π [−α2(1 − εt2)x̂

−β2(1 − εt2)ŷ + ikz(1 − εz2)ẑ],
Out

(31)

and
P AA

IO,kz
(⇀
r ) = 1−ε

4π ∇ΦAA
IO (⇀

r ) = 1−ε
4π ∇

[
ΦA

IO(x)ΦA
IO(y)eikzz

]

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C2 exp(−α2Lx−β2Ly+ikzz)
4π cosh(α1Lx) cosh(β1Ly) [x̂α1(1 − εt1) cosh(α1x)

× sinh(β1y) + β1(1 − εt1) cosh(β1y) sinh(α1x)ŷ

+ikz(1 − εz1) sinh(α1x) sinh(β1y)ẑ],

In

C2 exp(−α2|x|−β2|y|+ikzz)
4π

[−α2(1 − εt2)x̂

−β2(1 − εt2)ŷ + ikz(1 − εz2)ẑ].
Out

(32)

Once the anisotropy of wurtzite crystal materials are neglected (i.e. γi ≡ 1), the results of IO phonon modes

obtained here can be naturally reduced to the cases in isotropy Q1D quantum wire systems [31–33], which
reveals that the present results presented herein are more general than the previous ones reported.

3. Numerical results and discussion

In the present section, we discuss the dispersion spectra properties of the full optical phonon modes in a
rectangular wurtzite GaN/AlN QWR system. The discussions are focus on the dependence of phonon modes
dispersive frequencies on the free wave-vector kz in z -directions. The sizes of the rectangular QWR are kept
at Lx = Ly = 5 nm. The material parameters used in our calculations are listed in Table 1 [36, 38].
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Table 1. Zone-center energies (in meV) of polar optical phonons, and optical and static dielectric constant of wurtzite

AlN and GaN [36, 38].

Material A1(TO) E1(TO) A1(LO) E1(LO) ε∞

GaN 67.89 73.22 92.08 94.06 5.35
AlN 75.72 83.13 110.30 113.02 4.77

It is necessary to discuss briefly the physical model of wurtzite GaN/AlN QWR with rectangular cross-
section chosen here. In fact, the theoretical results of various phonon modes derived in the present work are
applicable to all the wurtzite GaN/AlGaN and InGaN/GaN rectangular QWR systems if DCM is valid. Taking

into account the situation that the Q1D binary GaN/AlN QWRs seem be easily fabricated in experiments [44–48]

in contrast to ternary nitride QWR structures, only the GaN/AlN QWR structure is chosen on which to perform

numerical analysis. On the other hand, the phonon spectra of Q2D planar GaN/AlN QWs [36–38, 42] and the

Q1D cylindrical GaN/AlN QWRs [11] were widely reported. Thus the present discussions of dispersive phonon

spectra on the rectangular GaN/AlN QWRs are convenient to compare with these previous results [11, 36–38,

42]. In additional, due to the fact that ternary AlxGa1−xN and Inx Ga1xN alloys usually present one-mode

and two-mode behaviors for polar phonon modes [49–54], the phonon spectra in rectangular GaN/AlxGa1−xN

and Inx Ga1−xN/GaN QWR may be quite complicated. For simplicity, only the binary GaN/AlN rectangular
QWRs are selected to analyze the dispersive properties of phonon modes here. Of course, we also have interest in
the effects of ternary mixed crystals on the phonon spectra features of the wurtzite rectangular QWR structures;
and we intend to report related work in this area in the near future.

Based on the parameters given in Table 1 and the above discussion on phonon mode types and char-
acteristic, we find there are three types of polar phonon modes: the QC, IO and HS modes coexisting in the
GaN/AlN QWR structures. Moreover, each phonon mode can appear in two frequency ranges. As discussed

above, though the PR phonon modes may exist in GaN/AlGaN quantum structures, the PR phonon modes

do not appear in the GaN/AlN QWRs. The PR phonon modes need both the negative function values of ξ1

and ξ2 for both well- and barrier-materials. But no frequency range which satisfies both negative ξi (i =1, 2)

values exists in Table 2. Thus there is no PR phonon mode in the GaN/AlN QWR structures [11]. Detailed
situations are displayed in Table 2. The symbol “∼” in the table denotes the beginning value of the next and
adjacent frequency range. And the superscripts “L” and “H” are used to distinguish these phonon modes in the
low-and high-frequency ranges, respectively. It is noted that the range [ωtT 2 ,ωzL1 ] is forbidden because all the
dispersive equations have no solution in this frequency range. This is a general feature of polar optical phonon
modes in quantum confined systems [11, 12, 38, 43].

Table 2. Signs of the function ξ i(ω)(i =1, 2) and phonon mode types in seven frequency ranges divided by the

characteristic frequencies of GaN and AlN materials.

Ranges [ωzT1 ∼] [ωtT1 ∼] [ωzT2 ∼] [ωtT2 ∼] [ωzL1 ∼] [ωtL1 ∼] [ωzL2ωtL2 ]
ξ1(ω) - + + + - + +
ξ2(ω) + + - + + + -
Modes QCL IOL HSL Forbidden QCH IOH HSH

The dispersive frequencies �ω of HS phonon modes in low-frequency and high-frequency ranges as a
function of phonon wave-number kz in free z -direction are plotted in Figures 2 and 3, respectively. The solid
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lines and dashed lines correspond respectively the symmetrical (HSSi) and antisymmetric (HSAi) HS modes.

From the figures, it is observed clearly that the dispersive spectra of HS modes in Figure 2 (Figure 3) are

just within the low (hight-) frequency range of HS modes, i.e. [ωzT2 ,ωtT2 ] ([ωzL2 ,ωtL2 ]), which are completely
consistent with the observation in Table 2. There are infinite branches of HS phonon modes for a given kz in the
Q1D GaN/AlN rectangular QWR systems. Only the first four branches of HS modes are displayed for simplicity

in each frequency range here. All the HS modes in low-frequency range (HSL
A/S,i modes in Figure 2) are the

monotonic and increasing functions of wave-number kz , while those in low-frequency range (HSH
A/S,i modes in

Figure 3) are the monotonic and decreasing functions of wave-number kz . As kz approaches zero, the dispersive

frequencies of all the HSL
A/S,i modes converge to the characteristic frequency ωzT2 , and those of all the HSH

A/S,i

modes converge to the another characteristic frequency ωtT2 for AlN material. The dispersive frequencies of

the antisymmetric HSL
A,i modes are always higher than those of the corresponding symmetrical HSL

S,i modes

(Figure 2). This means that the antisymmetric HSL
A,i modes are more dispersive than the symmetrical ones.

But for the HSH
A/S,i modes in high-frequency range (Figure 3), the case is just opposite, i.e the symmetrical

HSH
S,i modes are more dispersive than the antisymmetrical ones. The HS phonon modes are not specific for

wurtzite quantum confined systems, which also can appear in isotropic cubic quantum systems [36].

0 5 10 15 20
75.0

76.5

78.0

79.5

81.0

82.5

84.0

HS
L
A 4 HS

L
S4HS

L
S3HS

L
A 3

HS
L
A 2

HS
L
S2

HS
L
A 1

HS
L
S1

zT2

(m
eV
)

k z  d

Figure 2. Dispersive frequencies �ω of HS phonon modes in low-frequency range as a function of the phonon wave-

number kz in the Q1D wurtzite GaN/AlN rectangular QWR.

Figure 4 depicts the dispersive frequencies �ω of the IO phonon modes in high-frequency range as

a function of kz . It is seen clearly that there are two branches of IOH phonon modes: one branch of

symmetrical modes IOH
S (Solid line) and one branch of antisymmetrical modes IOH

A (Dash line) in the QWR

systems. The dispersion of each branch of IOH mode is more obvious only when kz is relatively small.
These are the common behaviors of phonon modes in quantum confined structures, which are completely
analogous to the cubic rectangular GaAa-based quantum wires [31–33]. When wave number kz → ∞ , the
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frequencies of the two branches of IOH modes converge to a certain limited constant value 103.5 meV. Via
detailed analysis, it is found that the limited frequency value 103.5 meV is just one solution of the equation√

εz1(ω)εt1(ω) −
√

εz2(ω)εt2(ω) = 0. This equation determines the frequency of the IO phonons in single

wurtzite planar GaN-based heterostructure [36]. In fact, as kz → ∞ , the functions tanh(α1Lx) tanh(β1Ly),

coth(α1Lx) and coth(β1Ly) approach unity, the dispersion of IO modes in the Q1D rectangular QWRs can
be reduced naturally to the identical form given above. The profound physical reason lie in the fact that IO
modes cannot distinguish the planar and curved heterostructures due to large (small) enough free wave-number

(wave-length) of IO phonon modes [55].
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Figure 3. Dispersive frequencies �ω of HS phonon modes in high-frequency range as a function of kz in the wurtzite

rectangular QWR.

0 5 10 15 20

96

99

102

105

108

IOHS

IOHA

k z d

(m
eV
)

Figure 4. Dispersive frequencies �ω of the IO phonon modes in high-frequency range as a function of kz in the QWR

structure.
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The dispersive spectra of QC phonon modes in the high-frequency range as a function of the wave number
kz are shown in Figure 5. Only the first four branches of the symmetrical and antisymmetrical QC modes are
given here. As kz approaches zero, the frequencies of all the QC modes converge to the characteristic value of

ωtL1 for GaN material. The other features of these dispersive curves for QCH modes are quite similar to those
for HS modes in high-frequency range (see Figure 3).
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Figure 5. Dispersive spectra of QC phonon modes in high-frequency range as a function of the wave numberkz in the

QWR system.

Figure 6 plots the dispersive spectra of QC modes and the IO modes in low-frequency range as a function
of kz in the GaN/AlN QWR system. The solid (dashed) curves correspond to the symmetrical (antisymmetrical)

phonon modes. For a certain wave number kz there are infinite branches of QCL phonon modes, and only
the first four branches of symmetrical and antisymmetrical modes are considered for simplicity here. But only

one or two branches of IOL modes exist in the Q1D GaN/AlN QWRs for a given kz . As kzd < 3, only one

branch of antisymmetrical IOL
A appear. And both the symmetrical and antisymmetrical IOL

A/S appear when

the wave-number kzd is over than 3. As kz approaches infinity, the frequencies of both IOL
A/S converge to

73.98 meV. The related mathematical and physical reasons for this observation are analyzed deeply above in

Figure 4. It is interesting to note that the symmetrical QCL
S1 mode will reduce to the symmetrical IOL

S phonon
modes as its frequency is over than the characteristic frequency ωtT1 This is the typical reducing behavior of
different types of phonon modes in wurtzite quantum systems [11]. Via the definition of the function ξi(ω) (see

equation (7)) or Table 2, it is found that ξ1(ω) changes from a negative value to positive as ω > ωtT1 ; thus
the QC mode in low-frequency range cannot exist in this situation, and it will reduce to the low-frequency IO
phonon mode in the GaN/AlN QWRs. The observation shows that the dispersive equations (10), (11) and (30)
for QC and IO modes describe the inner self-consistency of phonon modes nature in Q1D wurtzite rectangular
QWR structures. This also illustrates the correctness and reasonableness of the present theories of phonon
modes. Comparing with the corresponding results of the dispersive spectra for QC and IO modes with those
in Q2D GaN/AlN quantum wells, there is no reducing behavior between the QC and IO phonon modes [38].
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This reveals that the confined dimensionality can influence greatly the dispersive feature of phonon modes in
wurtzite nano-structures [29].
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Figure 6. Dispersive spectra of QC modes and IO modes in low-frequency range as a function of kz in the GaN/AlN

QWR system.

At last, we should point out that the DCM and Loudon’s uniaxial crystal model [35] are sufficient and

valid for the description of phonon modes in the rectangular GaN/AlN QWR with the sizes being Lx = Ly =
5 nm. In general, the efficiency of the DCM is limited to the situation in which the phonon wavelengths are
large enough compared with the lattice constant of the semiconductors [56–58]. In fact, the condition that the

phonon wavelength (in μm) is far larger than the lattice constant of nitride semiconductors (for GaN, the lattice

constant a = 3.189 Å and c = 5.185 Å [49]) can be easily satisfied. Thus, the DCM can be used to deal with the

quantum confined systems with several monolayers (MLs) to tens of MLs [59–61]. Moreover, the experimental
results of angular dispersion of polar phonons and Raman scattering, the electron-phonon scattering rates,
and the polaronic binding energies in wurtzite heterostructures are proven to be in good agreement with the
calculations based on DCM and the Loudon’s uniaxial crystal model [13, 30, 58, 6–63]. Hence the numerical
results of phonon dispersive spectra on a rectangular QWR with sizes being Lx = Ly = 5 nm are valuable and

meaningful.

4. Conclusions

In summary, by adopting the DCM and Loudon’s uniaxial crystal models, the full polar optical phonon
modes including the PR, QC, HS and IO phonon modes in a Q1D wurtzite QWR with rectangular crossing-
section have been investigated in the present work. The analytical phonon states and dispersion equations
as well as polar polarization eigenvectors for the four types of phonon modes are derived. Each mode has
two types of form, i.e. one is symmetrical mode, and the other is antisymmetrical due to the symmetry of
the rectangular QWR structures. Numerical calculations are performed on a wurtzite GaN/AlN rectangular
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QWR. That three types of phonon mode including the QC, HS and IO modes can appear in the GaN/AlN
QWR system is confirmed. The features of dispersive spectra for these modes are displayed and analyzed. The
reducing behavior of different types of phonon mode are observed in the Q1D wurtzite rectangular QWR. It is
found that the symmetrical QC mode reduces to the symmetrical IO mode as their frequencies approach the
characteristic frequency ωtL1 of GaN material, which reveals that the present theories of phonon modes are
self-consistency and correct for the description of phonon modes in wurtzite Q1D rectangular QWR. This is
different obviously from the situation of wurtzite Q2D QWs [38].

These observations show that the confined dimensionality and cross-section shape can influence greatly
the dispersive properties of phonon modes in low-dimensional quantum structures [28, 29].

The results obtained in the present paper are quite useful for further investigating the polaronic effect
and have significant meaning for analyzing experimental phonon spectra, and for some important optoelectric
device designs and applications based on the Q1D GaN-based rectangular QWR structures [26].
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